Skip to main content

Automated Analysis of Intracellular Dynamic Processes

  • Protocol
  • First Online:
Light Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1563))

Abstract

The study of intracellular dynamic processes is of fundamental importance for understanding a wide variety of diseases and developing effective drugs and therapies. Advanced fluorescence microscopy imaging systems nowadays allow the recording of virtually any type of process in space and time with super-resolved detail and with high sensitivity and specificity. The large volume and high information content of the resulting image data, and the desire to obtain objective, quantitative descriptions and biophysical models of the processes of interest, require a high level of automation in data analysis. Two key tasks in extracting biologically meaningful information about intracellular dynamics from image data are particle tracking and particle trajectory analysis. Here we present state-of-the-art software tools for these tasks and describe how to use them.

*These authors contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Moser M, Frühwirth M, Kenner T (2008) The symphony of life: importance, interaction, and visualization of biological rhythms. IEEE Eng Med Biol Mag 27:29–37

    Article  PubMed  Google Scholar 

  2. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726

    Article  CAS  PubMed  Google Scholar 

  3. Spanjaard E, Smal I, Angelopoulos N, Verlaan I, Matov A, Meijering E, Wessels L, Bos H, de Rooij J (2015) Quantitative imaging of focal adhesion dynamics and their regulation by HGF and Rap1 signaling. Exp Cell Res 330:382–397

    Article  CAS  PubMed  Google Scholar 

  4. Reuter M, Zelensky A, Smal I, Meijering E, van Cappellen WA, de Gruiter HM, van Belle GJ, van Royen ME, Houtsmuller AB, Essers J, Kanaar R, Wyman C (2014) BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. J Cell Biol 207:599–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2(12):910–919

    Article  CAS  PubMed  Google Scholar 

  6. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  7. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86

    Article  CAS  PubMed  Google Scholar 

  8. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rittscher J (2010) Characterization of biological processes through automated image analysis. Annu Rev Biomed Eng 12:315–344

    Article  CAS  PubMed  Google Scholar 

  10. Danuser G (2011) Computer vision in cell biology. Cell 147:973–978

    Article  CAS  PubMed  Google Scholar 

  11. Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME, Murphy RF, Peng H, Plant AL, Roysam B, Stuurman N, Swedlow JR, Tomancak P, Carpenter AE (2012) Biological imaging software tools. Nat Methods 9(7):697–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200

    Article  PubMed  Google Scholar 

  13. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smal I, Loog M, Niessen W, Meijering E (2010) Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans Med Imaging 29:282–301

    Article  PubMed  Google Scholar 

  15. Ruusuvuori P, Aijö T, Chowdhury S, Garmendia-Torres C, Selinummi J, Birbaumer M, Dudley AM, Pelkmans L, Yli-Harja O (2010) Evaluation of methods for detection of fluorescence labeled subcellular objects in microscope images. BMC Bioinform 11:248

    Article  Google Scholar 

  16. Stěpka K, Matula P, Matula P, Wörz S, Rohr K, Kozubek M (2015) Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy. Cytometry A 87:759–772

    Article  PubMed  Google Scholar 

  17. Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, Unser M (2015) Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods 12:717–724

    Article  CAS  PubMed  Google Scholar 

  18. Smal I, Meijering E (2015) Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy. Med Image Anal 24:163–189

    Article  PubMed  Google Scholar 

  19. Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KEG, Jaldén J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai YS, de Solórzano CO, Olivo-Marin JC, Meijering E (2014) Objective comparison of particle tracking methods. Nat Methods 11:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gal N, Lechtman-Goldstein D, Weihs D (2013) Particle tracking in living cells: a review of the mean square displacement method and beyond. Rheol Acta 52:425–443

    Article  CAS  Google Scholar 

  21. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  22. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25–30

    Article  PubMed  Google Scholar 

  23. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  26. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang B, Zerubia J, Olivo-Marin JC (2007) Gaussian approximations of fluorescence microscope point-spread function models. Appl Optics 46:1819–1829

    Article  Google Scholar 

  29. Olivo-Marin JC (2002) Extraction of spots in biological images using multiscale products. Pattern Recognit 35:1989–1996

    Article  Google Scholar 

  30. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Montagner YL, Lagache T, Dufour A, Olivo-Marin JC (2012) Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods 9:690–696

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dutch Technology Foundation (STW Grants 10443 and 13391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Meijering .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yao, Y., Smal, I., Grigoriev, I., Martin, M., Akhmanova, A., Meijering, E. (2017). Automated Analysis of Intracellular Dynamic Processes. In: Markaki, Y., Harz, H. (eds) Light Microscopy. Methods in Molecular Biology, vol 1563. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6810-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6810-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6808-4

  • Online ISBN: 978-1-4939-6810-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics