Advertisement

Automated Chemical Solid-Phase Synthesis and Deprotection of 5-Hydroxymethylcytosine-Containing RNA

  • Christian Riml
  • Ronald MicuraEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1562)

Abstract

5-Hydroxymethylcytosine is an epigenetic base modification that is part of the demethylation pathway of 5-methylcytosine in DNA. 5-Methylcytosine is iteratively oxidized to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine by enzymes of the TET protein family. Since the discovery of 5-hydroxymethylcytosine also in RNA its role in regulatory processes and metabolism remains elusive. To gain more insight into the function of RNA containing 5-hydroxymethylcytidine, innovative and interdisciplinary approaches are required. In this context, synthetic oligoribonucleotides containing 5-hyroxymethylcytidine are an inevitable tool. Therefore, in this chapter, we present the efficient synthesis of RNA oligonucleotides containing 5-hydroxymethylcytosine by solid-phase synthesis. The incorporation of the modified cytosine derivative into RNA is compatible with standard phosphoramidite-based synthesis procedures of oligoribonucleotides.

Key words

Solid-phase synthesis RNA Methylation Epigenetics Cytosine 

Notes

Acknowledgments

We thank the Austrian Science Fund FWF (I1040 and P27947) for funding.

References

  1. 1.
    Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220. doi: 10.1038/nrg3354 CrossRefPubMedGoogle Scholar
  2. 2.
    Shen L, Song C, He C et al (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem 83(1):585–614. doi: 10.1146/annurev-biochem-060713-035513 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74(1):481–514. doi: 10.1146/annurev.biochem.74.010904.153721 CrossRefPubMedGoogle Scholar
  4. 4.
    Kumar S, Cheng X, Klimasauskas S et al (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22(1):1–10. doi: 10.1093/nar/22.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fu Y, He C (2012) Nucleic acid modifications with epigenetic significance. Curr Opin Chem Biol 16(516):–524. doi: 10.1016/j.cbpa.2012.10.002
  6. 6.
    He Y, Li B, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. doi: 10.1126/science.1210944 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential Implications for active demethylation of CpG sites. J Biol Chem 286(41):35334–35338. doi: 10.1074/jbc.C111.284620 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Squires JE, Patel HR, Nousch M et al (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40(11):5023–5033. doi: 10.1093/nar/gks144 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Amort T, Soulière MF, Wille A et al (2013) Long non-coding RNAs as targets for cytosine methylation. RNA Biol 10(6):1003–1008. doi: 10.4161/rna.24454 CrossRefPubMedGoogle Scholar
  10. 10.
    Fu L, Guerrero CR, Zhong N et al (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 136(33):11582–11585. doi: 10.1021/ja505305z CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    He C (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6(12):863–865. doi: 10.1038/nchembio.482 CrossRefPubMedGoogle Scholar
  12. 12.
    Booth MJ, Ost TWB, Beraldi D et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protocols 8(10):1841–1851CrossRefPubMedGoogle Scholar
  13. 13.
    Booth MJ, Marsico G, Bachman M et al (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6(5):435–440CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Song C, Szulwach KE, Fu Y et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotech 29(1):68–72. doi: 10.1038/nbt.1732 CrossRefGoogle Scholar
  15. 15.
    Tardy-Planechaud S, Fujimoto J, Lin SS et al (1997) Solid phase synthesis and restriction endonuclease cleavage of oligodeoxynucleotides containing 5-(Hydroxymethyl)-cytosine. Nucleic Acids Res 25(3):553–558. doi: 10.1093/nar/25.3.553 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139(11):1895–1902. doi: 10.1242/dev.070771 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dai Q, Song C, Pan T et al (2011) Syntheses of two 5-hydroxymethyl-2′-deoxycytidine phosphoramidites with TBDMS as the 5-hydroxyl protecting group and their incorporation into DNA. J Org Chem 76(10):4182–4188. doi: 10.1021/jo200566d CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Münzel M, Globisch D, Trindler C et al (2010) Efficient synthesis of 5-hydroxymethylcytosine containing DNA. Org Lett 12(24):5671–5673. doi: 10.1021/ol102408t CrossRefPubMedGoogle Scholar
  19. 19.
    Riml C, Micura R (2016) Synthesis of 5-hydroxymethylcytidine- and 5-hydroxymethyluridine-modified RNA. Synthesis (Stuttg) 48:1108–1116. doi: 10.1055/s-0035-1561220 CrossRefGoogle Scholar
  20. 20.
    Pitsch S, Weiss PA, Jenny L et al (2001) Reliable chemical synthesis of oligoribonucleotides (RNA) with 2′-O-[(Triisopropylsilyl)oxy]methyl(2′-O-tom)-protected phosphoramidites. HCA 84(12):3773–3795. doi: 10.1002/1522-2675(20011219)84:12<3773:AID-HLCA3773>3.0.CO;2-E CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Center for Molecular Biosciences, CMBILeopold-Franzens UniversityInnbruckAustria

Personalised recommendations