Abstract
Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when significant conformational changes that may occur during the binding process need to be predicted. In this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and significant flexibility of a protein receptor. During CABS-dock docking, the peptide folding and binding process is explicitly simulated and no information about the peptide binding site or its structure is used. This chapter presents a successful CABS-dock use for docking a potentially therapeutic peptide to a protein target. Moreover, simulation contact maps, a new CABS-dock feature, are described and applied to the docking test case. Finally, a tutorial for running CABS-dock from the command line or command line scripts is provided. The CABS-dock web server is available from http://biocomp.chem.uw.edu.pl/CABSdock/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tsomaia N (2015) Peptide therapeutics: targeting the undruggable space. Eur J Med Chem 94:459–470
Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128
Diller DJ, Swanson J, Bayden AS, Jarosinski M, Audie J (2015) Rational, computer-enabled peptide drug design: principles, methods, applications and future directions. Future Med Chem 7:2173–2193
London N, Raveh B, Schueler-Furman O (2013) Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 23:894–902
Yan C, Zou X (2015) Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J Comput Chem 36:49–61
Verschueren E, Vanhee P, Rousseau F, Schymkowitz J, Serrano L (2013) Protein-peptide complex prediction through fragment interaction patterns. Structure 21:789–797
Saladin A, Rey J, Thevenet P, Zacharias M, Moroy G, Tuffery P (2014) PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Res 42:W221–W226
Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, Schueler-Furman O, Kozakov D (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105
Antes I (2010) DynaDock: a new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 78:1084–1104
London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39:W249–W253
Trellet M, Melquiond AS, Bonvin AM (2013) A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 8, e58769
Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6, e18934
Trellet M, Melquiond AS, Bonvin AM (2015) Information-driven modeling of protein-peptide complexes. Methods Mol Biol 1268:221–239
Donsky E, Wolfson HJ (2011) PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics 27:2836–2842
Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43:W419–W424
Blaszczyk M, Kurcinski M, Kouza M, Wieteska L, Debinski A, Kolinski A, Kmiecik S (2015) Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods 93:72–83
Jamroz M, Kolinski A, Kmiecik S (2013) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41:W427–W431
Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41:W406–W411
Jamroz M, Kolinski A, Kmiecik S (2014) Protocols for efficient simulations of long-time protein dynamics using coarse-grained CABS model. Methods Mol Biol 1137:235–250
Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382
Ciemny MP, Debinski A, Paczkowska M, Kolinski A, Kurcinski M, Kmiecik S (2016) Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Sci Rep 6:37532
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936
Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736
Burgermeister E, Schnoebelen A, Flament A, Benz J, Stihle M, Gsell B, Rufer A, Ruf A, Kuhn B, Marki HP, Mizrahi J, Sebokova E, Niesor E, Meyer M (2006) A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol 20:809–830
Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K (2008) Using VMD: an introductory tutorial. Curr Protoc Bioinformatics 5:57
Kurcinski M, Kolinski A, Kmiecik S (2014) Mechanism of folding and binding of an intrinsically disordered protein as revealed by ab initio simulations. J Chem Theory Comput 10:2224–2231
Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 2:1–31
Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524
Unal EB, Gursoy A, Erman B (2010) VitAL: Viterbi algorithm for de novo peptide design. PLoS One 5, e10926
Bhattacherjee A, Wallin S (2013) Exploring protein-peptide binding specificity through computational peptide screening. PLoS Comput Biol 9, e1003277
Lee H, Heo L, Lee MS, Seok C (2015) GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res 43:W431–W435
London N, Raveh B, Schueler-Furman O (2013) Druggable protein-protein interactions—from hot spots to hot segments. Curr Opin Chem Biol 17:952–959
London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins 78:3140–3149
Kmiecik S, Kolinski A (2017) One-dimensional structural properties of proteins in the coarse-grained CABS model. In: Prediction of protein secondary structure. Springer, New York, pp 83–113
Acknowledgments
The authors acknowledge support from the National Science Center grant [MAESTRO 2014/14/A/ST6/00088].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Ciemny, M.P., Kurcinski, M., Kozak, K.J., Kolinski, A., Kmiecik, S. (2017). Highly Flexible Protein-Peptide Docking Using CABS-Dock. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_6
Download citation
DOI: https://doi.org/10.1007/978-1-4939-6798-8_6
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-6796-4
Online ISBN: 978-1-4939-6798-8
eBook Packages: Springer Protocols