Skip to main content

Highly Flexible Protein-Peptide Docking Using CABS-Dock

  • Protocol
  • First Online:
Modeling Peptide-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1561))

Abstract

Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when significant conformational changes that may occur during the binding process need to be predicted. In this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and significant flexibility of a protein receptor. During CABS-dock docking, the peptide folding and binding process is explicitly simulated and no information about the peptide binding site or its structure is used. This chapter presents a successful CABS-dock use for docking a potentially therapeutic peptide to a protein target. Moreover, simulation contact maps, a new CABS-dock feature, are described and applied to the docking test case. Finally, a tutorial for running CABS-dock from the command line or command line scripts is provided. The CABS-dock web server is available from http://biocomp.chem.uw.edu.pl/CABSdock/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsomaia N (2015) Peptide therapeutics: targeting the undruggable space. Eur J Med Chem 94:459–470

    Article  CAS  PubMed  Google Scholar 

  2. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  3. Diller DJ, Swanson J, Bayden AS, Jarosinski M, Audie J (2015) Rational, computer-enabled peptide drug design: principles, methods, applications and future directions. Future Med Chem 7:2173–2193

    Article  CAS  PubMed  Google Scholar 

  4. London N, Raveh B, Schueler-Furman O (2013) Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr Opin Struct Biol 23:894–902

    Article  CAS  PubMed  Google Scholar 

  5. Yan C, Zou X (2015) Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J Comput Chem 36:49–61

    Article  CAS  PubMed  Google Scholar 

  6. Verschueren E, Vanhee P, Rousseau F, Schymkowitz J, Serrano L (2013) Protein-peptide complex prediction through fragment interaction patterns. Structure 21:789–797

    Article  CAS  PubMed  Google Scholar 

  7. Saladin A, Rey J, Thevenet P, Zacharias M, Moroy G, Tuffery P (2014) PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces. Nucleic Acids Res 42:W221–W226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, Beglov D, Schueler-Furman O, Kozakov D (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the modeling and targeting of peptide-mediated interactions. Proteins 81:2096–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Antes I (2010) DynaDock: a new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 78:1084–1104

    Article  CAS  PubMed  Google Scholar 

  10. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server—high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39:W249–W253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trellet M, Melquiond AS, Bonvin AM (2013) A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One 8, e58769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raveh B, London N, Zimmerman L, Schueler-Furman O (2011) Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6, e18934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trellet M, Melquiond AS, Bonvin AM (2015) Information-driven modeling of protein-peptide complexes. Methods Mol Biol 1268:221–239

    Article  CAS  PubMed  Google Scholar 

  14. Donsky E, Wolfson HJ (2011) PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics 27:2836–2842

    Article  CAS  PubMed  Google Scholar 

  15. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43:W419–W424

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blaszczyk M, Kurcinski M, Kouza M, Wieteska L, Debinski A, Kolinski A, Kmiecik S (2015) Modeling of protein-peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods 93:72–83

    Article  PubMed  Google Scholar 

  17. Jamroz M, Kolinski A, Kmiecik S (2013) CABS-flex: server for fast simulation of protein structure fluctuations. Nucleic Acids Res 41:W427–W431

    Article  PubMed  PubMed Central  Google Scholar 

  18. Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41:W406–W411

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jamroz M, Kolinski A, Kmiecik S (2014) Protocols for efficient simulations of long-time protein dynamics using coarse-grained CABS model. Methods Mol Biol 1137:235–250

    Article  CAS  PubMed  Google Scholar 

  20. Das R, Baker D (2008) Macromolecular modeling with rosetta. Annu Rev Biochem 77:363–382

    Article  CAS  PubMed  Google Scholar 

  21. Ciemny MP, Debinski A, Paczkowska M, Kolinski A, Kurcinski M, Kmiecik S (2016) Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Sci Rep 6:37532

    Google Scholar 

  22. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936

    Google Scholar 

  23. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    Article  CAS  PubMed  Google Scholar 

  24. Burgermeister E, Schnoebelen A, Flament A, Benz J, Stihle M, Gsell B, Rufer A, Ruf A, Kuhn B, Marki HP, Mizrahi J, Sebokova E, Niesor E, Meyer M (2006) A novel partial agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma) recruits PPARgamma-coactivator-1alpha, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol 20:809–830

    Article  CAS  PubMed  Google Scholar 

  25. Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K (2008) Using VMD: an introductory tutorial. Curr Protoc Bioinformatics 5:57

    Google Scholar 

  26. Kurcinski M, Kolinski A, Kmiecik S (2014) Mechanism of folding and binding of an intrinsically disordered protein as revealed by ab initio simulations. J Chem Theory Comput 10:2224–2231

    Article  CAS  PubMed  Google Scholar 

  27. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143

    Article  CAS  PubMed  Google Scholar 

  28. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 2:1–31

    Google Scholar 

  29. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Unal EB, Gursoy A, Erman B (2010) VitAL: Viterbi algorithm for de novo peptide design. PLoS One 5, e10926

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bhattacherjee A, Wallin S (2013) Exploring protein-peptide binding specificity through computational peptide screening. PLoS Comput Biol 9, e1003277

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee H, Heo L, Lee MS, Seok C (2015) GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res 43:W431–W435

    Article  PubMed  PubMed Central  Google Scholar 

  33. London N, Raveh B, Schueler-Furman O (2013) Druggable protein-protein interactions—from hot spots to hot segments. Curr Opin Chem Biol 17:952–959

    Article  CAS  PubMed  Google Scholar 

  34. London N, Raveh B, Movshovitz-Attias D, Schueler-Furman O (2010) Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins 78:3140–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kmiecik S, Kolinski A (2017) One-dimensional structural properties of proteins in the coarse-grained CABS model. In: Prediction of protein secondary structure. Springer, New York, pp 83–113

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the National Science Center grant [MAESTRO 2014/14/A/ST6/00088].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kmiecik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ciemny, M.P., Kurcinski, M., Kozak, K.J., Kolinski, A., Kmiecik, S. (2017). Highly Flexible Protein-Peptide Docking Using CABS-Dock. In: Schueler-Furman, O., London, N. (eds) Modeling Peptide-Protein Interactions. Methods in Molecular Biology, vol 1561. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6798-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6798-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6796-4

  • Online ISBN: 978-1-4939-6798-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics