A Histochemical Technique for the Detection of Annonaceous Acetogenins

  • Guillermo Laguna-HernándezEmail author
  • Alicia Enriqueta Brechú-Franco
  • Iván De la Cruz-Chacón
  • Alma Rosa González-Esquinca
Part of the Methods in Molecular Biology book series (MIMB, volume 1560)


Annonaceous acetogenins (ACGs) are molecules with carbon numbers C35–C37, usually with tetrahydrofuran and tetrahydropyran rings and one terminal γ-lactone (usually α,β-unsaturated), in a large aliphatic chain that is varyingly hydroxylated, acetoxylated or ketonized. ACGs have ecological functions as insecticides and are pharmacologically promising due to their cytotoxic and antitumoral properties. They are found in the seeds, leaves, roots, flowers and fruits of annonaceous plants and can be detected during isolation via thin-layer chromatography using Kedde’s reagent, which reacts with the unsaturated lactone. This chapter describes the location in situ of ACGs in fresh sections of annonaceous seeds using Kedde’s reagent.

The acetogenins are located in the idioblasts, in the endosperm and in the embryonic axis during differentiation. This method can aid in the detection of ACGs with a terminal unsaturated γ-lactone in organs and tissues.

Key words

Acetogenins Annonaceae Kedde’s reagent Idioblasts Germinating seeds Histochemistry 



The authors thank Dr. Patricia Rivas Manzano and Biol. Carlos Tonatiuh Chavira Ramírez for technical assistance with the cryostat sectioning in the Laboratory of Tissue and Reproductive Biology, Faculty of Sciences, National Autonomous University of Mexico.


  1. 1.
    Jolad SD, Hoffmann JJ, Schram KH et al (1982) Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae). J Org Chem 47(16):3151–3153. doi: 10.1021/jo00137a024 CrossRefGoogle Scholar
  2. 2.
    Ruprecht JK, Hui YH, McLaughlin JL (1990) Annonaceous acetogenins: a rewiew. J Nat Prod 53(2):237–278CrossRefGoogle Scholar
  3. 3.
    Cavé A, Figadére B, Laurens A et al (1997) Acetogenins from Annonaceae. In: Herz W, Kirby GW, Moore RE et al (eds) Progress in the chemistry of organic natural products. Springer, New York, NY, pp 81–287Google Scholar
  4. 4.
    Alali FQ, Liu XX, McLaughlin JL (1999) Annonaceus acetogenins: recent progress. J Nat Prod 62:504–540PubMedCrossRefGoogle Scholar
  5. 5.
    Bermejo A, Figadère B, Zafra-Polo MC et al (2005) Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 22:269–303PubMedCrossRefGoogle Scholar
  6. 6.
    Kirchner JG (1967) Thin layer chromatographphy. In: Perry ES, Weissberger A (eds) Technique of organic chemistry, vol 12. Interscience, New York, NY, pp 147–186Google Scholar
  7. 7.
    Kedde DL (1947) Bijdrage tot het chemisch onderzoek van Digitalispreparaten. Pharm Weekbl 82:741–757Google Scholar
  8. 8.
    Lewbart ML, Wehrli W, Reichstein T (1963) Die Cardenolide von Gongronema gazense (S. Moore) Bullock Glykoside und Aglykone. Helv Chim Acta 46(2):505–517CrossRefGoogle Scholar
  9. 9.
    Luckner M (1984) Secondary metabolism in microorganisms, plants, and animals, 2nd edn. Springer, New York, NY, p 247. doi: 10.1007/978-3-662-02384-6 CrossRefGoogle Scholar
  10. 10.
    Kovar KA, Francas G, Seidel R (1977) Zum mechanismus der Reaktionen nach Raymond, Kedde und Baljet. Archiv Pharmazie (Weinheim) 310(1):40–47CrossRefGoogle Scholar
  11. 11.
    Jork H, Funk W, Fischer W et al (1990) Thin-layer chromatography ‘reagents and detection methods’. Vol lb physical and chemical detection methods: activation reactions, reagent sequences, reagents II. English edition: Frank and Jennifer A. Hampson. VCH Weinheim, Basel, pp 263–267Google Scholar
  12. 12.
    Flasch H, Diembeck W (1981) Chemical and chromatographic method (methods for determination of cardiac glycosides). In: Greeff K (ed) Cardiac glycosides, part I, handbook of experimental pharmacology, vol 56. Springer, Berlin, pp 27–42CrossRefGoogle Scholar
  13. 13.
    Görög S (1983) Cardiac glycosides. Quantitative analysis of steroids. Stud Anal Chem 5:372–407CrossRefGoogle Scholar
  14. 14.
    Leboeuf M, Cavé A, Bhaumik PK et al (1982) The phytochemistry of the Annonaceae. Phytochemistry 21(12):2783–2813CrossRefGoogle Scholar
  15. 15.
    Zweig G, Sherma J (eds) (1972) Handbook of chromatography, vol II. Section 2.1. Detection reagents for paper and/or thin-layer chromatography. CRC Press The Chemical Rubber Co, Boca Raton, FL, p 170Google Scholar
  16. 16.
    Wagner H, Bladt S (1996) Plant drug analysis: a thin layer chromatography atlas. Springer, New York, NY, p 362, Appendix A: spray reagentsCrossRefGoogle Scholar
  17. 17.
    Houghton JP, Raman A (1998) Handbook for the fractionation of natural extracts. Chapman and Hall, London, p 185, Appendix A. Recipes for chemical test reagentsCrossRefGoogle Scholar
  18. 18.
    Parellada EA, Ferrero M, Cartagena E et al (2013) Laherradurin, a natural stressor, stimulates QS mechanism involved in biofilm formation of a PAHs degrading bacterium. Int Biodeter Biodegrad 2013(85):78–84CrossRefGoogle Scholar
  19. 19.
    González-Esquinca AR (2001) Contribución al estudio del género Annona (Annonaceae). Análisis fitoquímico de tres especies del estado de Chiapas. Tesis doctoral. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  20. 20.
    De la Cruz-Chacón I (2001) Acetogeninas bioactivas de Annona diversifolia Safford. Tesis de Licenciatura. Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, ChiapasGoogle Scholar
  21. 21.
    Abraján Hernández P (2002) Acetogeninas y compuestos de Annona lutescens Safford. Tesis (Licenciatura en Ingeniería Química). Instituto Tecnológico de Tuxtla Gutiérrez, ChiapasGoogle Scholar
  22. 22.
    De la Cruz-Chacón I, González-Esquinca AR (2013) Activities of enzymes catalyzing benzylisoquinoline alkaloid biosynthesis in Annona diversifolia Saff. during early development. Russ J Plant Phys 60(6):791–799CrossRefGoogle Scholar
  23. 23.
    González-Esquinca AR, De la Cruz-Chacón I, Castro-Moreno M et al (2014) Alkaloids and acetogenins in Annonaceae development: biological considerations. Rev Bras de Frutic 36:01–16CrossRefGoogle Scholar
  24. 24.
    Laguna-Hernández G, Brechú-Franco AE, De la Cruz-Chacón I et al (2015) The histochemical detection of acetogenins and storage molecules in the endosperm of Annona macroprophyllata Donn Sm. seeds. Eur J Histochem 59:2502. doi: 10.4081/ejh.2015.2502
  25. 25.
    Brechú-Franco AE, Laguna-Hernández G, De la Cruz-Chacón I et al (2016) In situ histochemical localisation of alkaloids and acetogenins in the endosperm and embryonic axis of Annona macroprophyllata Donn. Sm. seeds during germination. Eur J Histochem 60: 2568. doi: 10.4081/ejh.2016.2568
  26. 26.
    Ministerio de Agricultura (1976) Reglas internacionales para ensayos de semillas. Instituto Nacional de Semillas y plantas de Vivero. Dirección General de la Producción Agraria. Reimpreso por la SARH, Mexico CityGoogle Scholar
  27. 27.
    Mata R, Rivero-Cruz JF, Chávez D (2001) Bioactive secondary metabolites from selected mexican medicinal plants: Recent progress. In Tringali C (2001) Bioactive compounds from natural sources Isolation, characterization and biological properties. Taylor & Francis, LondonGoogle Scholar
  28. 28.
    Cepleanu F, Ohtani K, Hamburger M et al (1993) Novel acetogenins from the leaves of Annona purpurea. Helv Chim Acta 76:1379–1388CrossRefGoogle Scholar
  29. 29.
    Chávez D, Mata R (1998) Purpurediolin and purpurenin, two new cytotoxic adjacent bis-tetrahydrofuran Annonaceous acetogenins from the seeds of Annona purpurea. J Nat Prod 61:580–584PubMedCrossRefGoogle Scholar
  30. 30.
    Chávez D, Mata R (1999) Purpuracenin: a new cytotoxic adjacent bis-tetrahydrofuran annonaceous acetogenin from the seeds of Annona purpurea. Phytochemistry 50:823–828PubMedCrossRefGoogle Scholar
  31. 31.
    Rodríguez-López CE, Hernández-Brenes C, De la Garza RID (2015) A targeted metabolomics approach to characterize acetogenin profiles in avocado fruit (Persea americana Mill). RSC Adv 5(128):106019–106029CrossRefGoogle Scholar
  32. 32.
    Ayyad SEN, Al-Footy KO, Alarif WM et al (2011) Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chem Pharm Bull 59(10):1294–1298PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Guillermo Laguna-Hernández
    • 1
    Email author
  • Alicia Enriqueta Brechú-Franco
    • 1
  • Iván De la Cruz-Chacón
    • 2
  • Alma Rosa González-Esquinca
    • 2
  1. 1.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MexicoMexico
  2. 2.Instituto de Ciencias BiológicasUniversidad de Ciencias y Artes de Chiapas, None, Libramiento Norte Poniente 1150. Col. LajasMacielChiapasMexico

Personalised recommendations