Autofluorescence Spectroscopy for Monitoring Metabolism in Animal Cells and Tissues

  • Anna C. CroceEmail author
  • Giovanni Bottiroli
Part of the Methods in Molecular Biology book series (MIMB, volume 1560)


Excitation of biological substrates with light at a suitable wavelength can give rise to a light emission in the ultraviolet (UV)-visible, near-infrared (IR) spectral range, called autofluorescence (AF). This is a widespread phenomenon, ascribable to the general presence of biomolecules acting as endogenous fluorophores (EFs) in the organisms of the whole life kingdom. In cytochemistry and histochemistry, AF is often an unwanted signal enhancing the background and affecting in particular the detection of low signals or rare positive labeling spots of exogenous markers. Conversely, AF is increasingly considered as a powerful diagnostic tool because of its role as an intrinsic biomarker directly dependent on the nature, amount, and microenvironment of the EFs, in a strict relationship with metabolic processes and structural organization of cells and tissues. As a consequence, AF carries multiple information that can be decrypted by a proper analysis of the overall emission signal, allowing the characterization and monitoring of cell metabolism in situ, in real time and in the absence of perturbation from exogenous markers. In the animal kingdom, AF studies at the cellular level take advantage of the essential presence of NAD(P)H and flavins, primarily acting as coenzymes at multiple steps of common metabolic pathways for energy production, reductive biosynthesis and antioxidant defense. Additional EFs such as vitamin A, porphyrins, lipofuscins, proteins, and neuromediators can be detected in different kinds of cells and bulk tissues, and can be exploited as photophysical biomarkers of specific normal or altered morphofunctional properties, from the retinoid storage in the liver to aging processes, metabolic disorders or cell transformation processes. The AF phenomenon involves all living system, and literature reports numerous investigations and diagnostic applications of AF, taking advantage of continuously developing self-assembled or commercial instrumentation and measuring procedures, making almost impossible to provide their comprehensive description. Therefore a brief summary of the history of AF observations and of the development of measuring systems is provided, along with a description of the most common EFs and their metabolic significance. From our direct experience, examples of AF imaging and microspectrofluorometric procedures performed under a single excitation in the near-UV range for cell and tissue metabolism studies are then reported.

Key words

Spectrofluorometry Endogenous fluorophores Curve fitting analysis Energy metabolism Lipofuscin 



We wish to thank all the the colleagues contributing to our autofluorescence studies, as referred to in this chapter.


  1. 1.
    Kasten FH (1989) Cell Structure and Function by Microspectrofluorometry. Cell Struct Funct by Microspectrofluorometry. doi: 10.1016/B978-0-12-417760-4.50008-2 Google Scholar
  2. 2.
    Rost BFWD (1995) Fluorescence microscopy, volume II. By F.W.D. Rost Cambridge University Press, Cambridge and New York. DOI:  10.1002/sca.4950180810
  3. 3.
    Croce AC, Bottiroli G (2014) Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 58:2461. doi: 10.4081/ejh.2014.2461 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wessendorf M (2004) Autofluorescence: Causes and Cures. 1–8.
  5. 5.
    Johnston NW, Bienenstock J (1974) Abolition of non-specific fluorescent staining of eosinophils. J Immunol Methods 4:189–194. doi: 10.1016/0022-1759(74)90060-X PubMedCrossRefGoogle Scholar
  6. 6.
    Jayyosi C, Coret M, Bruyère-Garnier K (2016) Characterizing liver capsule microstructure via in situ bulge test coupled with multiphoton imaging. J Mech Behav Biomed Mater 54:229–243. doi: 10.1016/j.jmbbm.2015.09.031 PubMedCrossRefGoogle Scholar
  7. 7.
    Croce AC, De Simone U, Vairetti M et al (2008) Liver autofluorescence properties in animal model under altered nutritional conditions. Photochem Photobiol Sci 7:1046–1053. doi: 10.1039/B804836C PubMedCrossRefGoogle Scholar
  8. 8.
    Croce AC, Santamaria G, De Simone U et al (2011) Naturally-occurring porphyrins in a spontaneous-tumour bearing mouse model. Photochem Photobiol Sci 10:1189–1195. doi: 10.1039/c0pp00375a PubMedCrossRefGoogle Scholar
  9. 9.
    Neumann M, Gabel D (2002) Simple Method for Reduction of Autofluorescence in Fluorescence Microscopy. J Histochem Cytochem 50:437–439. doi: 10.1177/002215540205000315 PubMedCrossRefGoogle Scholar
  10. 10.
    Popper H, Gyorgy P, Goldblatt H (1944) Fluorescent material (ceroid) in experimental nutritional cirrhosis. Arch Path 37:161–168Google Scholar
  11. 11.
    Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32:1870–1874PubMedGoogle Scholar
  12. 12.
    Bidlack WR, Tappel AL (1973) Fluorescent products of phospholipids during lipid peroxidation. Lipids 8:203–207PubMedCrossRefGoogle Scholar
  13. 13.
    Verbunt RJ, Fitzmaurice MA, Kramer JR et al (1992) Characterization of ultraviolet laser-induced autofluorescence of ceroid deposits and other structures in atherosclerotic plaques as a potential diagnostic for laser angiosurgery. Am Heart J 123:208–216PubMedCrossRefGoogle Scholar
  14. 14.
    Phipps JE, Hatami N, Galis ZS et al (2011) A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and −9 in human atherosclerotic plaque. J Biophotonics 4:650–658. doi: 10.1002/jbio.201100042 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ottis P, Koppe K, Onisko B et al (2012) Human and rat brain lipofuscin proteome. Proteomics 12:2445–2454. doi: 10.1002/pmic.201100668 PubMedCrossRefGoogle Scholar
  16. 16.
    Palmer DN, Husbands DR, Winter PJ et al (1986) Ceroid lipofuscinosis in sheep. I. Bis(monoacylglycero)phosphate, dolichol, ubiquinone, phospholipids, fatty acids, and fluorescence in liver lipopigment lipids. J Biol Chem 261:1766–1772PubMedGoogle Scholar
  17. 17.
    Grattagliano I, Caraceni P, Calamita G et al (2008) Severe liver steatosis correlates with nitrosative and oxidative stress in rats. Eur J Clin Invest 38:523–530. doi: 10.1111/j.1365-2362.2008.01963.x PubMedCrossRefGoogle Scholar
  18. 18.
    Reiniers MJ, van Golen RF, van Gulik TM, Heger M (2014) Reactive oxygen and nitrogen species in steatotic hepatocytes: a molecular perspective on the pathophysiology of ischemia-reperfusion injury in the fatty liver. Antioxid Redox Signal 21:1119–1142. doi: 10.1089/ars.2013.5486 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Neuschwander-Tetri BA (2010) Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52:774–788. doi: 10.1002/hep.23719 PubMedCrossRefGoogle Scholar
  20. 20.
    Leamy AK, Egnatchik RA, Young JD (2013) Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res 52:165–174. doi: 10.1016/j.plipres.2012.10.004 PubMedCrossRefGoogle Scholar
  21. 21.
    Peverill W, Powell LW, Skoien R (2014) Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 15:8591–638. doi: 10.3390/ijms15058591 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Duysen LN, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 24:19–26CrossRefGoogle Scholar
  23. 23.
    Chance B, Legallais V (1951) Rapid and Sensitive Spectrophotometry. II. A Stopped-Flow Attachment for a Stabilized Quartz Spectrophotometer. Rev Sci Instrum 22:627. doi:  10.1063/1.1746020
  24. 24.
    Chance B, Legallais V, Schoener B (1962) Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature 195:1073–1075PubMedCrossRefGoogle Scholar
  25. 25.
    Chance B, Legallais V (1959) Differential Microfluorimeter for the Localization of Reduced Pyridine Nucleotide in Living Cells. Rev Sci Instrum 30:732. doi: 10.1063/1.1716736 CrossRefGoogle Scholar
  26. 26.
    Salmon JM, Kohen E, Viallet P et al (1982) Microspectrofluorometric approach to the study of free/bound NAD(P)H ratio as metabolic indicator in various cell types. Photochem Photobiol 36:585–593. doi: 10.1111/j.1751-1097.1982.tb04420.x PubMedCrossRefGoogle Scholar
  27. 27.
    Kunz WS, Kunz W (1985) Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim Biophys Acta 841:237–246PubMedCrossRefGoogle Scholar
  28. 28.
    Chance B, Legallais V (1963) A spectrofluorometer for recording of intracellular oxidation-reduction states. IEEE Trans Biomed Eng 10:40–47PubMedGoogle Scholar
  29. 29.
    Chance B, Thorell B (1959) Localization and kinetics of reduced pyridine nucleotide in living cells by microfluorometry. J Biol Chem 234:3044–3050PubMedGoogle Scholar
  30. 30.
    Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem J 402:205–18. doi: 10.1042/BJ20061638 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Nakamura M, Bhatnagar A, Sadoshima J (2012) Overview of pyridine nucleotides review series. Circ Res 111:604–610. doi: 10.1161/CIRCRESAHA.111.247924 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Reinert KC, Gao W, Chen G et al (2011) Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. Cerebellum 10:585–599. doi: 10.1007/s12311-011-0278-x PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wyroba E, Bottiroli G, Giordano P (1981) Autofluorescence of axenically cultivated Paramecium aurelia. Acta Protozool 20:165–170Google Scholar
  34. 34.
    Nwaneshiudu A, Kuschal C, Sakamoto FH et al (2012) Introduction to confocal microscopy. J Invest Dermatol 132, e3. doi: 10.1038/jid.2012.429 PubMedCrossRefGoogle Scholar
  35. 35.
    Georgakoudi I, Quinn KP (2012) Optical imaging using endogenous contrast to assess metabolic state. Annu Rev Biomed Eng 14:351–367. doi: 10.1146/annurev-bioeng-071811-150108 PubMedCrossRefGoogle Scholar
  36. 36.
    König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104. doi: 10.1046/j.1365-2818.2000.00738.x PubMedCrossRefGoogle Scholar
  37. 37.
    Williams RM, Piston DW, Webb WW (1994) Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J 8:804–813PubMedGoogle Scholar
  38. 38.
    Levitt JM, Hunter M, Mujat C et al (2007) Diagnostic cellular organization features extracted from autofluorescence images. Opt Lett 32:3305–3307. doi: 10.1364/OL.32.003305 PubMedCrossRefGoogle Scholar
  39. 39.
    Koenig K, Schneckenburger H (1994) Laser-induced autofluorescence for medical diagnosis. J Fluoresc 4:17–40. doi: 10.1007/BF01876650 PubMedCrossRefGoogle Scholar
  40. 40.
    Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65:8766–73. doi: 10.1158/0008-5472.CAN-04-3922 PubMedCrossRefGoogle Scholar
  41. 41.
    Skala MC, Riching KM, Gendron-Fitzpatrick A et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104:19494–9. doi: 10.1073/pnas.0708425104 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825. doi: 10.1016/S0006-3495(02)75621-X PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rice WL, Kaplan DL, Georgakoudi I (2010) Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS One 5, e10075. doi: 10.1371/journal.pone.0010075 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gratton E, Breusegem S, Sutin J et al (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8:381–390. doi: 10.1117/1.1586704 PubMedCrossRefGoogle Scholar
  45. 45.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The Phasor Approach to Fluorescence Lifetime Imaging Analysis. Biophys J 94:L14–16. doi: 10.1529/biophysj.107.120154 PubMedCrossRefGoogle Scholar
  46. 46.
    Levenson RM, Mansfield JR (2006) Multispectral imaging in biology and medicine: slices of life. Cytometry A 69:748–758. doi: 10.1002/cyto.a.20319 PubMedCrossRefGoogle Scholar
  47. 47.
    Levenson RM, Fornari A, Loda M (2008) Multispectral imaging and pathology: seeing and doing more. Expert Opin Med Diagn 2:1067–1081. doi: 10.1517/17530059.2.9.1067 PubMedCrossRefGoogle Scholar
  48. 48.
    Mansfield JR, Gossage KW, Hoyt CC, Levenson RM (2005) Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J Biomed Opt 10:41207. doi: 10.1117/1.2032458 PubMedCrossRefGoogle Scholar
  49. 49.
    Rigacci L, Alterini R, Bernabei PA et al (2000) Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues. Photochem Photobiol 71:737–742. doi:  10.1562/0031-8655(2000)0710737MIAMFT2.0.CO2
  50. 50.
    Carver GE, Locknar SA, Morrison WA et al (2014) High-speed multispectral confocal biomedical imaging. J Biomed Opt 19:36016. doi: 10.1117/1.JBO.19.3.036016 PubMedCrossRefGoogle Scholar
  51. 51.
    Rey JW, Kiesslich R, Hoffman A (2014) New aspects of modern endoscopy. World J Gastrointest Endosc 6:334–344. doi: 10.4253/wjge.v6.i8.334 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Monici M, Pratesi R, Bernabei P et al (1995) Natural fluorescence of white blood cells: spectroscopic and imaging study. J Photochem Photobiol B 30:29–37. doi: 10.1016/1011-1344(95)07149-V PubMedCrossRefGoogle Scholar
  53. 53.
    Klauke H, Minor T, Vollmar B et al (1998) Microscopic analysis of NADH fluorescence during aerobic and anaerobic liver preservation conditions: A noninvasive technique for assessment of hepatic metabolism. Cryobiology 36:108–114. doi: 10.1006/cryo.1997.2068 PubMedCrossRefGoogle Scholar
  54. 54.
    Mayevsky A, Walden R, Pewzner E et al (2011) Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system. J Biomed Opt 16:067004. doi: 10.1117/1.3585674 PubMedCrossRefGoogle Scholar
  55. 55.
    Mayevsky A, Chance B (2007) Oxidation-reduction states of NADH in vivo: from animals to clinical use. Mitochondrion 7:330–339. doi: 10.1016/j.mito.2007.05.001 PubMedCrossRefGoogle Scholar
  56. 56.
    Thomson A (1981) An Introduction to Spectroscopy for Biochemists. Biochem Educ 9:35. doi: 10.1016/0307-4412(81)90077-7 CrossRefGoogle Scholar
  57. 57.
    Kunz WS (1986) Spectral properties of fluorescent flavoproteins of isolated rat liver mitochondria. FEBS Lett 195:92–96. doi: 10.1016/0014-5793(86)80137-5 PubMedCrossRefGoogle Scholar
  58. 58.
    Scholz R, Thurman RG, Williamson JR et al (1969) Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I Anoxia and subcellular localization of fluorescent flavoproteins J Biol Chem 244:2317–2324PubMedGoogle Scholar
  59. 59.
    Croce AC, Bottiroli G (2015) New light in flavin autofluorescence. Eur J Histochem 59:2576. doi: 10.4081/ejh.2015.2576 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89:1271–1275PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hess B (1973) Organization of glycolysis: oscillatory and stationary control. Symp Soc Exp Biol 27:105–131PubMedGoogle Scholar
  62. 62.
    Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW (2005) Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem 280:25119–25126. doi: 10.1074/jbc.M502475200 PubMedCrossRefGoogle Scholar
  63. 63.
    Vollmar B, Burkhardt M, Minor T et al (1997) High-resolution microscopic determination of hepatic NADH fluorescence for in vivo monitoring of tissue oxygenation during hemorrhagic shock and resuscitation. Microvasc Res 54:164–173. doi: 10.1006/mvre.1997.2028 PubMedCrossRefGoogle Scholar
  64. 64.
    Croce AC, Ferrigno A, Vairetti M et al (2005) Autofluorescence spectroscopy of rat liver during experimental transplantation procedure. An approach for hepatic metabolism assessment. Photochem Photobiol Sci 4:583–590. doi: 10.1039/b503586d CrossRefGoogle Scholar
  65. 65.
    Thorniley MS, Simpkin S, Fuller B et al (1995) Monitoring of surface mitochondrial NADH levels as an indication of ischemia during liver isograft transplantation. Hepatology 21:1602–1609. doi: 10.1002/hep.1840210619 PubMedCrossRefGoogle Scholar
  66. 66.
    Meixensberger J, Herting B, Roggendorf W, Reichmann H (1995) Metabolic patterns in malignant gliomas. J Neurooncol 24:153–161PubMedCrossRefGoogle Scholar
  67. 67.
    Long Z, Maltas J, Zatt MC et al (2015) The real-time quantification of autofluorescence spectrum shape for the monitoring of mitochondrial metabolism. J Biophotonics 8:247–257. doi: 10.1002/jbio.201300207 PubMedCrossRefGoogle Scholar
  68. 68.
    Stringari C, Cinquin A, Cinquin O et al (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108:13582–7. doi: 10.1073/pnas.1108161108 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Croce AC, Spano A, Locatelli D et al (1999) Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity. Photochem Photobiol 69:364–374. doi: 10.1111/j.1751-1097.1999.tb03300.x PubMedCrossRefGoogle Scholar
  70. 70.
    Santin G, Paulis M, Vezzoni P et al (2013) Autofluorescence properties of murine embryonic stem cells during spontaneous differentiation phases. Lasers Surg Med 45:597–607. doi: 10.1002/lsm.22182 PubMedCrossRefGoogle Scholar
  71. 71.
    Croce AC, Ferrigno A, Piccolini VM et al (2014) Integrated autofluorescence characterization of a modified-diet liver model with accumulation of lipids and oxidative stress. Biomed Res Int 2014:803491. doi: 10.1155/2014/803491 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Warburg O (1956) On the origin of cancer cells. Oncol 9:75–83. doi: 10.1136/bmj.1.4082.694-a CrossRefGoogle Scholar
  73. 73.
    Villette S, Pigaglio-Deshayes S, Vever-Bizet C et al (2006) Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H. Photochem Photobiol Sci 5:483–492. doi: 10.1039/b514801d PubMedCrossRefGoogle Scholar
  74. 74.
    Galeotti T, van Rossum GD, Mayer DH, Chance B (1970) On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues. Eur J Biochem 17:485–496. doi: 10.1111/j.1432-1033.1970.tb01191.x PubMedCrossRefGoogle Scholar
  75. 75.
    Croce AC, Ferrigno A, Vairetti M et al (2004) Autofluorescence properties of isolated rat hepatocytes under different metabolic conditions. Photochem Photobiol Sci 3:920–926. doi: 10.1039/B407358D PubMedCrossRefGoogle Scholar
  76. 76.
    Viallet P, Salmon JM, Vigo J (1989) Cell Structure and Function by Microspectrofluorometry. Cell Struct Funct by Microspectrofluorometry. doi: 10.1016/B978-0-12-417760-4.50020-3 Google Scholar
  77. 77.
    Skala MC, Riching KM, Bird DK et al (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12:024014. doi: 10.1117/1.2717503 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Shiino A, Haida M, Beauvoit B, Chance B (1999) Three-dimensional redox image of the normal gerbil brain. Neuroscience 91:1581–1585. doi: 10.1016/S0306-4522(98)00670-8 PubMedCrossRefGoogle Scholar
  79. 79.
    Sato B, Tanaka A, Mori S et al (1995) Quantitative analysis of redox gradient within the rat liver acini by fluorescence images: effects of glucagon perfusion. Biochim Biophys Acta 1268:20–26PubMedCrossRefGoogle Scholar
  80. 80.
    Chance B, Schoener B, Oshino R et al (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals J Biol Chem 254:4764–71PubMedGoogle Scholar
  81. 81.
    Rattan SI, Keeler KD, Buchanan JH, Holliday R (1982) Autofluorescence as an index of ageing in human fibroblasts in culture. Biosci Rep 2:561–567PubMedCrossRefGoogle Scholar
  82. 82.
    Riga D, Riga S (1995) Lipofuscin and ceroid pigments in aging and brain pathology. A review. I. Biochemical and morphological properties. Rom J Neurol Psychiatry 33:121–136PubMedGoogle Scholar
  83. 83.
    Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111. doi: 10.1196/annals.1404.008 PubMedCrossRefGoogle Scholar
  84. 84.
    Santin G, Bottone MG, Malatesta M et al (2013) Regulated forms of cell death are induced by the photodynamic action of the fluorogenic substrate, Hypocrellin B-acetate. J Photochem Photobiol B Biol 125:90–97. doi: 10.1016/j.jphotobiol.2013.05.006 CrossRefGoogle Scholar
  85. 85.
    Wolman M (1980) Lipid pigments (chromolipids): their origin, nature, and significance. Pathobiol Annu 10:253–267PubMedGoogle Scholar
  86. 86.
    Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619. doi: 10.1016/S0891-5849(02)00959-0 PubMedCrossRefGoogle Scholar
  87. 87.
    Patková J, Vojtíšek M, Tůma J, et al. (2012) Evaluation of lipofuscin-like pigments as an index of lead-induced oxidative damage in the brain. Exp Toxicol Pathol Off J Gesellschaft für Toxikologische Pathol 64:51–56. doi:  10.1016/j.etp.2010.06.005
  88. 88.
    Sparrow JR, Gregory-Roberts E, Yamamoto K et al (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31:121–135. doi: 10.1016/j.preteyeres.2011.12.001 PubMedCrossRefGoogle Scholar
  89. 89.
    Guha S, Liu J, Baltazar G et al (2014) Rescue of compromised lysosomes enhances degradation of photoreceptor outer segments and reduces lipofuscin-like autofluorescence in retinal pigmented epithelial cells. Adv Exp Med Biol 801:105–11. doi: 10.1007/978-1-4614-3209-8_14 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Grossi E, Zaccheo D (1963) On the autofluorescence of specific granulations of eosinophilic leukocytes. Boll della Soc Ital di Biol Sper 39:421–424Google Scholar
  91. 91.
    Mayeno AN, Hamann KJ, Gleich GJ (1992) Granule-associated flavin adenine dinucleotide (FAD) is responsible for eosinophil autofluorescence. J Leukoc Biol 51:172–175PubMedGoogle Scholar
  92. 92.
    Barnes D, Aggarwal S, Thomsen S et al (1993) A characterization of the fluorescent properties of circulating human eosinophils. Photochem Photobiol 58:297–303. doi: 10.1111/j.1751-1097.1993.tb09565.x PubMedCrossRefGoogle Scholar
  93. 93.
    Dorward DA, Lucas CD, Alessandri AL et al (2013) Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production. J Leukoc Biol 94:193–202. doi: 10.1189/jlb.0113040 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Barni S, Vaccarone R, Bertone V et al (2002) Mechanisms of changes to the liver pigmentary component during the annual cycle (activity and hibernation) of Rana esculenta L. J Anat 200:185–94. doi: 10.1046/j.0021-8782.2001.00011.x PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    D’Ambrosio DN, Clugston RD, Blaner WS (2011) Vitamin A metabolism: an update. Nutrients 3:63–103. doi: 10.3390/nu3010063 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Vollmar B, Burkhardt M, Minor T et al (1997) In vivo analysis of hepatic NADH fluorescence. Methodological approach to exclude Ito-cell vitamin A-derived autofluorescence. Microvasc Res 454:83–89. doi: 10.1006/mvre.1997.2028 Google Scholar
  97. 97.
    Croce AC, De Simone U, Freitas I et al (2010) Human liver autofluorescence: an intrinsic tissue parameter discriminating normal and diseased conditions. Lasers Surg Med 42:371–378. doi: 10.1002/lsm.20923 PubMedCrossRefGoogle Scholar
  98. 98.
    Taketani S, Ishigaki M, Mizutani A et al (2007) Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins. Biochemistry 46:15054–61. doi: 10.1021/bi701460x PubMedCrossRefGoogle Scholar
  99. 99.
    Sakaino M, Ishigaki M, Ohgari Y et al (2009) Dual mitochondrial localization and different roles of the reversible reaction of mammalian ferrochelatase. FEBS J 276:5559–70. doi: 10.1111/j.1742-4658.2009.07248.x PubMedCrossRefGoogle Scholar
  100. 100.
    Spike RC, Johnston HS, McGadey J et al (1986) Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the harderian gland of the female golden hamster. II The time course of changes after ovariectomy J Anat 145:67–77PubMedGoogle Scholar
  101. 101.
    Freitas I, Boncompagni E, Vaccarone R et al (2007) Iron accumulation in mammary tumor suggests a tug of war between tumor and host for the microelement. Anticancer Res 27:3059–3065PubMedGoogle Scholar
  102. 102.
    Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Berg K, Selbo PK, Weyergang A et al (2005) Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J Microsc 218:133–147. doi: 10.1111/j.1365-2818.2005.01471.x PubMedCrossRefGoogle Scholar
  104. 104.
    Bottiroli G, Ramponi R, Croce AC (1987) Quantitative analysis of intracellular behaviour of porphyrins. Photochem Photobiol 46:663–667. doi: 10.1111/j.1751-1097.1987.tb04829.x PubMedCrossRefGoogle Scholar
  105. 105.
    Dal Fante M, Bottiroli G, Spinelli P (1988) Behaviour of haematoporphyrin derivative in adenomas and adenocarcinomas of the colon: a microfluorometric study. Lasers Med Sci 3:165–171. doi: 10.1007/BF02593808 CrossRefGoogle Scholar
  106. 106.
    Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281. doi: 10.3322/caac.20114 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Al-Salhi M, Masilamani V, Vijmasi T et al (2011) Lung cancer detection by native fluorescence spectra of body fluids--a preliminary study. J Fluoresc 21:637–645. doi: 10.1007/s10895-010-0751-9 PubMedCrossRefGoogle Scholar
  108. 108.
    Lualdi M, Colombo A, Leo E et al (2007) Natural fluorescence spectroscopy of human blood plasma in the diagnosis of colorectal cancer: feasibility study and preliminary results. Tumori 93:567–571PubMedGoogle Scholar
  109. 109.
    Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. doi:  10.1007/978-0-387-46312-4
  110. 110.
    Teale FW, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem J 65:476–482PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Schweizer J, Bowden PE, Coulombe PA et al (2006) New consensus nomenclature for mammalian keratins. J Cell Biol 174:169–174. doi: 10.1083/jcb.200603161 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Beuthan J, Minet O, Müller G (1998) Optical biopsy of cytokeratin and NADH in the tumor border zone. Ann N Y Acad Sci 838:150–710. doi: 10.1111/j.1749-6632.1998.tb08196.x PubMedCrossRefGoogle Scholar
  113. 113.
    Eyre DR, Paz MA, Gallop PM (1984) Cross-linking in collagen and elastin. Annu Rev Biochem 53:717–48. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  114. 114.
    Thornhill DP (1975) Separation of a series of chromophores and fluorophores present in elastin. Biochem J 147:215–219PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Matcher SJ (2015) What can biophotonics tell us about the 3D microstructure of articular cartilage? Quant Imaging Med Surg 5:143–158. doi: 10.3978/j.issn.2223-4292.2014.12.03 PubMedPubMedCentralGoogle Scholar
  116. 116.
    Marcu L (2000) Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy. Proc SPIE 3917:93–101. doi: 10.1117/12.382720 CrossRefGoogle Scholar
  117. 117.
    Fiarman GS, Nathanson MH, West AB et al (1995) Differences in laser-induced autofluorescence between adenomatous and hyperplastic polyps and normal colonic mucosa by confocal microscopy. Dig Dis Sci 40:1261–1268PubMedCrossRefGoogle Scholar
  118. 118.
    Banerjee B, Rial NS, Renkoski T et al (2013) Enhanced visibility of colonic neoplasms using formulaic ratio imaging of native fluorescence. Lasers Surg Med 45:573–581. doi: 10.1002/lsm.22186 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bottiroli G, Croce AC, Locatelli D et al (1995) Natural fluorescence of normal and neoplastic human colon: a comprehensive “ex vivo” study. Lasers Surg Med 16:48–60. doi: 10.1002/lsm.1900160107 PubMedCrossRefGoogle Scholar
  120. 120.
    Sturm MB, Wang TD (2015) Emerging optical methods for surveillance of Barrett’s oesophagus. Gut 64:1816–23. doi: 10.1136/gutjnl-2013-306706 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Nazeer SS, Sandhyamani S, Jayasree RS (2015) Optical diagnosis of the progression and reversal of CCl4-induced liver injury in rodent model using minimally invasive autofluorescence spectroscopy. Analyst 140:3773–3780. doi: 10.1039/c4an01507j PubMedCrossRefGoogle Scholar
  122. 122.
    Thorling CA, Crawford D, Burczynski FJ et al (2014) Multiphoton microscopy in defining liver function. J Biomed Opt 19:90901. doi: 10.1117/1.JBO.19.9.090901 PubMedCrossRefGoogle Scholar
  123. 123.
    Thimm TN, Squirrell JM, Liu Y et al (2015) Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Eng Part C Methods 21:995–1004. doi: 10.1089/ten.TEC.2014.0699 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lutz V, Sattler M, Gallinat S et al (2012) Characterization of fibrillar collagen types using multi-dimensional multiphoton laser scanning microscopy. Int J Cosmet Sci 34:209–15. doi: 10.1111/j.1468-2494.2012.00705.x PubMedCrossRefGoogle Scholar
  125. 125.
    Toivola DM, Boor P, Alam C, Strnad P (2015) Keratins in health and disease. Curr Opin Cell Biol 32:73–81. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  126. 126.
    Yamagishi S-I, Fukami K, Matsui T (2015) Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol 185:263–268. doi: 10.1016/j.ijcard.2015.03.167 PubMedCrossRefGoogle Scholar
  127. 127.
    Hu H, Jiang H, Ren H et al (2015) AGEs and chronic subclinical inflammation in diabetes: disorders of immune system. Diabetes Metab Res Rev 31:127–137. doi: 10.1002/dmrr.2560 PubMedCrossRefGoogle Scholar
  128. 128.
    Arsov S, Graaff R, van Oeveren W et al (2014) Advanced glycation end-products and skin autofluorescence in end-stage renal disease: a review. Clin Chem Lab Med 52:11–20. doi: 10.1515/cclm-2012-0832 PubMedCrossRefGoogle Scholar
  129. 129.
    Kaushalya SK, Nag S, Ghosh H et al (2008) A high-resolution large area serotonin map of a live rat brain section. Neuroreport 19:717–721. doi: 10.1097/WNR.0b013e3282fd6946 PubMedCrossRefGoogle Scholar
  130. 130.
    Crespi F, Croce AC, Fiorani S et al (2004) Autofluorescence Spectrofluorometry of Central Nervous System (CNS) Neuromediators. Lasers Surg Med 34:39–47. doi: 10.1002/lsm.10240 PubMedCrossRefGoogle Scholar
  131. 131.
    Balaji J, Desai R, Maiti S (2004) Live cell ultraviolet microscopy: a comparison between two- and three-photon excitation. Microsc Res Tech 63:67–71. doi: 10.1002/jemt.10426 PubMedCrossRefGoogle Scholar
  132. 132.
    Botchway SW, Parker AW, Bisby RH, Crisostomo AG (2008) Real-time cellular uptake of serotonin using fluorescence lifetime imaging with two-photon excitation. Microsc Res Tech 71:267–73. doi: 10.1002/jemt.20548 PubMedCrossRefGoogle Scholar
  133. 133.
    Obi-Tabot ET, Hanrahan LM, Cachecho R et al (1993) Changes in hepatocyte NADH fluorescence during prolonged hypoxia. J Surg Res 55:575–80. doi: 10.1006/jsre.1993.1187 PubMedCrossRefGoogle Scholar
  134. 134.
    Ferrigno A, Richelmi P, Vairetti M (2013) Troubleshooting and improving the mouse and rat isolated perfused liver preparation. J Pharmacol Toxicol Methods 67:107–114. doi: 10.1016/j.vascn.2012.10.001 PubMedCrossRefGoogle Scholar
  135. 135.
    Abshagen K, Eipel C, Menger MD, Vollmar B (2006) Comprehensive analysis of the regenerating mouse liver: an in vivo fluorescence microscopic and immunohistological study. J Surg Res 134:354–62. doi: 10.1016/j.jss.2006.01.002 PubMedCrossRefGoogle Scholar
  136. 136.
    Coremans JM, Ince C, Bruining HA, Puppels GJ (1997) (Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart. Biophys J 72:1849–1860. doi: 10.1016/S0006-3495(97)78831-3 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Croce AC, Ferrigno A, Di Pasqua LG et al (2016) Autofluorescence discrimination of metabolic fingerprints in nutritional and genetic fatty liver models. J Photochem Photobiol B 164:13-20. doi:  10.1016/j.jphotobiol.2016.09.015
  138. 138.
    Croce AC, Ferrigno A, Bertone V et al (2016) fatty liver oxidative events monitored by autofluorescence optical diagnosis: Comparison between subnormothermic machine perfusion and conventional cold storage preservation. Hep Res. doi:  10.1111/hepr.12779
  139. 139.
    Marquardt DW (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc Ind Appl Math 11:431–441. doi: 10.1137/0111030 CrossRefGoogle Scholar
  140. 140.
    Hesse R, Chassé T, Szargan R (1999) Peak shape analysis of core level photoelectron spectra using UNIFIT for WINDOWS. Fresenius J Anal Chem 365:48–54. doi: 10.1007/s002160051443 CrossRefGoogle Scholar
  141. 141.
    Croce AC, Ferrigno A, Santin G et al (2014) Bilirubin: an autofluorescence bile biomarker of liver functionality monitoring. J Biophotonics 7:810-817. doi:  10.1002/jbio.201300039
  142. 142.
    Croce AC, Ferrigno A, Santin G et al (2014) Autofluorescence of liver tissue and bile: organ functionality monitoring during ischemia and reoxygenation. Lasers Surg Med 46:412–421. doi: 10.1002/lsm.22241 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute of Molecular Genetics (IGM) – CNRPaviaItaly
  2. 2.Department of Biology and Biotechnology “Lazzaro Spallanzani”University of PaviaPaviaItaly

Personalised recommendations