Advertisement

Fluorochromes for DNA Staining and Quantitation

  • Giuliano MazziniEmail author
  • Marco Danova
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1560)

Abstract

In these last few decades the great explosion of the molecular approaches has casted a little shadow on the DNA quantitative analysis. Nevertheless DNA cytochemistry represented a long piece of history in cell biology since the advent of the Feulgen reaction. This discovery was really the milestone of the emerging quantitative cytochemistry, and scientists from all over the world produced a very large literature on this subject. This first era of quantitation (histochemistry followed by cytochemistry) started by means of absorption measurements (histophotometry and cytophotometry). The successive introduction of fluorescence microscopy gave a great boost to quantitation, making easier and faster the determination of cell components by means of cytofluorometry. The development of flow cytometry further contributed to the importance of quantitative cytochemistry. At its beginning, the mission of flow cytometry was still DNA quantitation. For a decade the Feulgen reaction had been the reference methodology for both conventional and flow cytofluorometry; the advent of Shiff-type reagents contributed to expand the variety of possible fluorochromes excitable in the entire visible spectrum as well as in the ultraviolet region. The fluorescence scenario was progressively enriched by new probes among which are the intercalating dyes which made DNA quantitation simple and fast, thus spreading it worldwide. The final explosion of cytofluorometry was made possible by the availability of a large variety of probes directly binding DNA structure. In addition, immunofluorescence allowed to correlate the cell cycle-related DNA content to other cell markers. In the clinical application of flow cytometry, this promoted the introduction of multiparametric analyses aimed at describing the cytokinetic characteristics of a given cell subpopulation defined by a specific immunophenotype setting.

Key words

DNA content Quantitative cytochemistry Fluorochromes Fluorescence microscopy Flow cytometry 

Notes

Acknowledgments

The authors acknowledge Emanuela Cova for helpful discussion and contribution, and Carlo Pellicciari for his precious assistance in finding archival documents and pictures.

References

  1. 1.
    Dahm R (2005) Friedrich Miescher and the discovery of DNA. Dev Biol 278:274–288PubMedCrossRefGoogle Scholar
  2. 2.
    Franklin RE, Gosling RG (1953) Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 172:156–157PubMedCrossRefGoogle Scholar
  3. 3.
    Watson JD, Crick FH (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  4. 4.
    Caspersson T (1936) Uber den chemischen aufbau der strukturen des zellkernes. Scand Arch Physiol 73:8Google Scholar
  5. 5.
    Vialli M (1954) Su una possibile spiegazione di alcune presunte anomalie alla legge della costanza quantitativa dell’acido desossiribonucleico nelle cellule. Rend Ist Lomb Sc Lett 87:29–36Google Scholar
  6. 6.
    Vialli M (1954) Ricerche di istochimica quantitativa comparata sull’acido desossiribonucleico e sulle proteine. Monit Zool Ital 62:28–41Google Scholar
  7. 7.
    Vialli M (1957) Volume et conténu en ADN par noyau. Exp Cell Res Suppl 4:284–293Google Scholar
  8. 8.
    Kasten FH (2003) Robert Feulgen and his histochemical reaction for DNA. Biotech Histochem 78:45–49PubMedCrossRefGoogle Scholar
  9. 9.
    Böhm N, Sprenger E (1968) Fluorescence cytophotometry: a valuable method for the quantitative determination of nuclear Feulgen-DNA. Histochemie 16:100–118PubMedGoogle Scholar
  10. 10.
    Duijndam WAL, Van Duijn P (1975) The influence of chromatin compactness on the stoichiometry of the Feulgen-Schiff procedure studied in model films. II. Investigations on films containing condensed or swollen chicken erythrocyte nuclei. J Histochem Cytochem 23:891–900PubMedCrossRefGoogle Scholar
  11. 11.
    Gil JE, Jotz MM (1976) Further observations on the chemistry of pararosaniline-Feulgen staining. Histochemistry 46:147–160CrossRefGoogle Scholar
  12. 12.
    Kjellstrand PTT (1977) Temperature and acid concentration in the search for optimum Feulgen hydrolysis conditions. J Histochem Cytochem 25:129–134PubMedCrossRefGoogle Scholar
  13. 13.
    Gautier A, Schreyer M (1970) Feulgen-like electron stains for tissue sections. In: Favard P (ed) Microscopie electronique, vol 1. Société Française des Microscopies, Paris, pp 559–560Google Scholar
  14. 14.
    Chieco P, Derenzini M (1999) The Feulgen reaction 75 years on. Histochem Cell Biol 111:345–358PubMedCrossRefGoogle Scholar
  15. 15.
    Vialli M, Reggiani M (1948) Dispositivo per lo studio colorimetrico e fotometrico di preparati microscopici. Boll Soc Med Chirur Pavia 62:299–301Google Scholar
  16. 16.
    Casella C, Reggiani M (1949) Istospettrografia di fluorescenza. Arch Biol (Liège) 60:207–234Google Scholar
  17. 17.
    Vialli M, Romanini G (1950) Dispositivi semplificati di istofotometria nel visibile. Boll Soc Ital Biol Sperim 26:1633Google Scholar
  18. 18.
    Vialli M, Zanotti L (1957) Due nuovi modelli di istofotometri per assunzione di curve di assorbimento. La Ric Scient 27:3Google Scholar
  19. 19.
    Vialli M, Perugini S (1954) Due nuovi modelli di apparecchiature istofotometriche. Riv Istoch Norm Pat 1(2):149–170Google Scholar
  20. 20.
    Vialli M, Zanotti L, Bianchi U (1960) Istofotometro doppio a visione diretta per visibile e UV. Mikroskopie 15:72–81PubMedGoogle Scholar
  21. 21.
    Vialli M, Gerzeli G (1955) Primo contributo alle ricerche di microscopia interferenziale. Riv Istoch Norm Pat 1:503–518Google Scholar
  22. 22.
    Ornstein L (1952) The distributional error in microspectrophotometry. Lab Invest 1:250–265PubMedGoogle Scholar
  23. 23.
    Adams LR (1968) A photographic cytophotometric method which avoids distributional error. Acta Cytol 12:3–8PubMedGoogle Scholar
  24. 24.
    Chieco P, Jonker A, Melchiorri C et al (1994) A user’s guide for avoiding errors in absorbance image cytometry: a review with original experimental observations. Histochem J 26:1–19PubMedCrossRefGoogle Scholar
  25. 25.
    Deeley EM (1955) An integrating microdensitometer for biological cells. J Sci Instrum 31:263–267CrossRefGoogle Scholar
  26. 26.
    Benedetti PA, Viola-Magni MP (1966) A scanning integrating histophotometer. J Sci Instrum 43:141–143PubMedCrossRefGoogle Scholar
  27. 27.
    Ploem JS (1967) The use of vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incident light. Z wiss Mikrosk 68:129–142PubMedGoogle Scholar
  28. 28.
    Decosse JJ, Aiello N (1966) Feulgen hydrolysis: effects of acid and temperature. J Histochem Cytochem 14:601–604PubMedCrossRefGoogle Scholar
  29. 29.
    Nitsch B, Murken JD, Bruck HJ (1970) Determining Feulgen-DNA of individual chromosomes by fluorescence cytophotometry with incident light. Histochemie 23:254–265PubMedCrossRefGoogle Scholar
  30. 30.
    Vialli M, Prenna G (1969) Contribution to the cytospectrofluorometric measurement of 5-hydroxytryptamine in enterochromaffin cells. J Histochem Cytochem I5:321–330CrossRefGoogle Scholar
  31. 31.
    Prenna G, Mazzini G, Cova S (1974) Methodological and instrumentational aspects of cytofluorometry. Histochem J 6:259–278PubMedCrossRefGoogle Scholar
  32. 32.
    Cova S, Prenna G, Mazzini G (1974) Digital microscpectrofluorometry by multichannel scaling and single photon detection. Histochem J 6:279–299PubMedCrossRefGoogle Scholar
  33. 33.
    Prenna G, Leiva S, Mazzini G (1974) Quantitation of DNA by cytofluorometry of the conventional Feulgen reaction. Histochem J 6:467–489PubMedCrossRefGoogle Scholar
  34. 34.
    Vialli M (1952) Parallelo tra reazioni argentiche e reazioni di Schiff in istomorfologia e in istochimica. Rend Ist Lomb Sc Lett 85:323–332Google Scholar
  35. 35.
    Itikawa O, Ogura Y (1954) Simplified manufacture and histochemical use of the Schiff reagent. Stain Technol 29:9–11PubMedCrossRefGoogle Scholar
  36. 36.
    Van Duijn P (1956) A histochemical specific thionine-SO2 reagent and its use in a bi-color method for deoxyribonucleic acid and periodic acid Schiff positive substances. J Histochem Cytochem 4:55–63CrossRefGoogle Scholar
  37. 37.
    Kasten FH (1958) Additional Schiff-type reagents for use in cytochemistry. Stain Technol 33:39–45PubMedCrossRefGoogle Scholar
  38. 38.
    Kasten FH (1960) The chemistry of Schiff’s reagent. Int Rev Cytol 10:1–100Google Scholar
  39. 39.
    Prenna G, De Paoli AM (1964) La deidrotio-p-toluidina-SO2, un nuovo reagente tipo Schiff altamente fluorescente. Riv Istoch Norm Pat 10:185–186Google Scholar
  40. 40.
    Prenna G, De Paoli AM (1964) Derivati tiazolici come reagenti tipo Schiff fluorescenti. Rend Ist Lomb Sc Lett B 98:267–273Google Scholar
  41. 41.
    Prenna G, Bianchi UA (1964) Reazioni di Feulgen fluorescenti e loro possibilità citofluorometriche quantitative. 5) citofotometria quantitativa in fluorescenza ed in assorbimento della reazione di Feulgen eseguita con acriflavina-SO2. Riv Istoch Norm Pat 10:667–676Google Scholar
  42. 42.
    Prenna G, De Paoli AM (1968) Impiego del Rivanol come reagente tipo Schiff fluorescente nella reazione di Feulgen. Riv Istoch Norm Pat 14:169–170Google Scholar
  43. 43.
    Mazzini G, Giordano P (1980) Effects of some solvents on the fluorescence intensity of phenantridinic derivatives-DNA complexes: flow cytofluorometric application. In: Laerum OD, Lindmo T, Thorud E (eds) Flow cytometry IV. Universitetsforlaget, BergenGoogle Scholar
  44. 44.
    Mazzini G, Giordano P, Riccardi A et al (1980) Biological significance of flow cytometric application of phenantridinic dyes at low concentration. Basic Appl Histochem 24:264Google Scholar
  45. 45.
    Mazzini G, Giordano PA (1981) Flow cytometry: a methodologic approach for fast quantitative cytochemical measurements and its use for the study of the chromatin structure. Basic Appl Histochem 25:303PubMedGoogle Scholar
  46. 46.
    Mazzini G, Bottiroli G, Prenna G (1975) An electronic device for the automatic correction of fluorescence emission spectra. Histochem J 7:291–297PubMedCrossRefGoogle Scholar
  47. 47.
    Trujillo TT, Van Dilla MA (1972) Adaptation of the fluorescent Feulgen reaction to cells in suspension for flow microfluorometry. Acta Cytol 16:26–30PubMedGoogle Scholar
  48. 48.
    Ormerod MG (1990) Flow cytometry: a practical approach. IRL Press, OxfordCrossRefGoogle Scholar
  49. 49.
    Rigler R Jr (1966) Microfluorometric characterization of intracellular nucleic acids and nucleo-proteins by Acridine Orange. Acta Physiol Scand 67(267):1–122Google Scholar
  50. 50.
    Darzynkiewicz Z (1979) Acridine orange as a molecular probe in studies of nucleic acids. In: Melamed MR, Mullaney PF, Mendelsohn ML (eds) Flow cytometry and sorting. John Wiley and Sons, New York, NYGoogle Scholar
  51. 51.
    Laerum OD, Farsund T (1981) Clinical applications of flow cytometry: a review. Cytometry 2:1–13PubMedCrossRefGoogle Scholar
  52. 52.
    Robinson JP (1993) Handbook of flow cytometry methods. Wiley-Liss, New York, NYGoogle Scholar
  53. 53.
    Shapiro HM (1998) Practical flow cytometry. Alan R Liss Inc, New York, NYGoogle Scholar
  54. 54.
    O'Donnell EA, Ernst DN, Hingorani R (2013) Multiparameter flow cytometry: advances in high resolution analysis. Immune Netw 13(2):43–54. doi: 10.4110/in.2013.13.2.43 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zembruski NCL, Nadine CL, Stache V et al (2012) 7-Aminoactinomycin D for apoptosis staining in flow cytometry. Analyt Biochem 429(1):179–181. doi: 10.1016/j.ab.2012.07.005 CrossRefGoogle Scholar
  56. 56.
    Göhde W (1972) Automation of cytofluorometry by use of the impulsmicrophotometer. In: Thaer A, Sernetz M (eds) Fluorescence techniques in cell biology. Springer, New York, NYGoogle Scholar
  57. 57.
    Latt SA, Stetten G (1976) Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem 24(1):24–33. doi: 10.1177/24.1.943439 PubMedCrossRefGoogle Scholar
  58. 58.
    Crissman HA, Steinkamp JA (1973) Rapid simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J Cell Biol 59:766–771PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193PubMedCrossRefGoogle Scholar
  60. 60.
    Fried J, Perez AG, Clarkson BD (1976) Flow cytofluorometric analysis of cell cycle distributions using propidium iodide. Properties of the method and mathematical analysis of the data. J Cell Biol 71:172–181PubMedCrossRefGoogle Scholar
  61. 61.
    Costa A, Mazzini G, Del Bino G et al (1981) DNA content and kinetic characteristics of non-Hodgkin's lymphoma determined by flow cytometry and autoradiography. Cytometry 2(3):185–188. doi: 10.1002/cyto.990020310 PubMedCrossRefGoogle Scholar
  62. 62.
    Zippel R, Martegani E, Vanoni M et al (1982) Cell cycle analysis in a human cell line (EUE cells). Cytometry 2(6):426–430. doi: 10.1002/cyto.990020612 PubMedCrossRefGoogle Scholar
  63. 63.
    Riccardi A, Mazzini G, Montecucco CM et al (1982) Sequential vincristine, arabinosylcytosine and adriamycin in acute leukemia: cytologic and cytokinetic studies. Cytometry 3(2):104–109. doi: 10.1002/cyto.990030207 PubMedCrossRefGoogle Scholar
  64. 64.
    Giraldi T, Sava G, Cherubino R et al (1984) Effects of DTIC, DM-COOK and ICRF-159 on the number of circulating Lewis lung carcinoma cells detected by flow cytometry. Clin Exp Metast 2(2):151–159CrossRefGoogle Scholar
  65. 65.
    Giordano P, Mazzini G, Riccardi A et al (1985) Propidium iodide staining of cytoautoradiographic preparations for the simultaneous determination of DNA content and grain count. Histochem J 17(11):1259–1270PubMedCrossRefGoogle Scholar
  66. 66.
    Riccardi A, Danova M, Montecucco CM et al (1986) Adult acute non-lymphoblastic leukaemia: reliability and prognostic significance of pretreatment bone marrow S-phase size determined by flow cytofluorometry. Scand J Haematol 36(1):11–17PubMedCrossRefGoogle Scholar
  67. 67.
    Mazzini G, Giordano P, Montecucco CM et al (1980) A rapid cytofluorometric method for quantitative DNA determination on fixed smears. Histochem J 12:153–168PubMedCrossRefGoogle Scholar
  68. 68.
    Haugland RP, Larison KD (1996) Handbook of fluorescent probes and research chemicals. Molecular Probes Inc, Eugene, ORGoogle Scholar
  69. 69.
    Ellwart JW, Dormer P (1990) Viability measurement using spectrum shift in Hoechst 33342 stained cells. Cytometry 11:239–243PubMedCrossRefGoogle Scholar
  70. 70.
    Mazzini G, Ferrari C, Erba E (2003) Dual excitation multi-fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. Eur J Histochem 47:289–298PubMedGoogle Scholar
  71. 71.
    Caspersson T (1979) Quantitative tumor cytochemistry. Cancer Res 39:2341–2355PubMedGoogle Scholar
  72. 72.
    Kamentsky LA, Melamed MR, Derman H (1969) Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150:630–631CrossRefGoogle Scholar
  73. 73.
    Van Dilla MA, Trujillo TT, Mullaney PF et al (1969) Cell microfluorometry: a method for rapid fluorescence measurement. Science 163:1213PubMedCrossRefGoogle Scholar
  74. 74.
    Melamed MR, Lindmo T, Mendelsohn ML (1991) Flow cytometry and sorting. Wiley-Liss, New York, NYGoogle Scholar
  75. 75.
    Longobardi A (1992) Flow cytometry: first principles. Wiley-Liss, New York, NYGoogle Scholar
  76. 76.
    Dittrich W, Göhde W (1969) Impulsfluorometrie bei einzelzellen in suspension. Z Naturforsch 24:360–361CrossRefGoogle Scholar
  77. 77.
    Göhde W, Dittrich W (1970) Simultane impulsfluorimetrie des DNS und proteingehaltes von Tumorzellen. Z Anal Chem 352:328–330CrossRefGoogle Scholar
  78. 78.
    Baisch H, Göhde W, Linden WA (1975) Analysis of PCP-data to determine the fraction of cells in the various phases of the cell cycle. Radiat Environ Biophys 12:31–39PubMedCrossRefGoogle Scholar
  79. 79.
    Barlogie B, Raber MN, Schuman J et al (1983) Flow cytometry in clinical cancer research. Cancer Res 43:3982–3997PubMedGoogle Scholar
  80. 80.
    Mares V, Giordano PA, Mazzini G et al (1987) Influence of cis-dichlorodiamineplatinum on glioma cell morphology and cell cycle kinetics in tissue culture. Histochem J 19(4):187–194PubMedCrossRefGoogle Scholar
  81. 81.
    Pellicciari C, Mazzini G, Fuhrman Conti AM et al (1989) Effect of hypertonic medium on human cell growth: III. Changes in cell kinetics of EUE cells. Cell Biol Int Rep 13(4):345–356PubMedCrossRefGoogle Scholar
  82. 82.
    Pellicciari C, Danova M, Giordano M et al (1991) Expression of cell cycle related proteins—proliferating cell nuclear antigen (PCNA) and statin—during adaptation and de-adaptation of EUE cells to a hypertonic medium. Cell Prolif 24(5):469–479. doi: 10.1111/j.1365-2184.1991.tb01175.x PubMedCrossRefGoogle Scholar
  83. 83.
    Casasco A, Casasco M, Cornaglia AI et al (2001) Cell kinetics in a model of artificial skin. An immunohistochemical and flow cytometric analysis. Eur J Histochem 45(2):125–130PubMedCrossRefGoogle Scholar
  84. 84.
    Derenzini M, Montanaro L, Chillà A et al (2005) Key role of the achievement of an appropriate ribosomal RNA complement for G1-S phase transition in H4-II-E-C3 rat hepatoma cells. J Cell Physiol 202(2):483–491. doi: 10.1002/jcp.20144 PubMedCrossRefGoogle Scholar
  85. 85.
    Montanaro L, Mazzini G, Barbieri S et al (2007) Different effects of ribosome biogenesis inhibition on cell proliferation in retinoblastoma protein- and p53-deficient and proficient human osteosarcoma cell lines. Cell Prolif 40(4):532–549. doi: 10.1111/j.1365-2184.2007.00448.x PubMedCrossRefGoogle Scholar
  86. 86.
    Rebuzzini P, Neri T, Mazzini G et al (2008) Karyotype analysis of the euploid cell population of a mouse embryonic stem cell line revealed a high incidence of chromosome abnormalities that varied during culture. Cytogenet Genom Res 121(1):18–24. doi: 10.1159/000124377 CrossRefGoogle Scholar
  87. 87.
    Derenzini M, Donati G, Mazzini G et al (2008) Loss of retinoblastoma tumor suppressor protein makes human breast cancer cells more sensitive to antimetabolite exposure. Clin Canc Res 14(7):2199–2209. doi: 10.1158/1078-0432.CCR-07-2065 CrossRefGoogle Scholar
  88. 88.
    Soza S, Leva V, Vago R et al (2009) DNA ligase I deficiency leads to replication-dependent DNA damage and impacts cell morphology without blocking cell cycle progression. Mol Cel Biol 29(8):2032–2041. doi: 10.1128/MCB.01730-08 CrossRefGoogle Scholar
  89. 89.
    Zonta A, Pinelli T, Prati U et al (2009) Extra-corporeal liver BNCT for the treatment of diffuse metastases: what was learned and what is still to be learned. Appl Radiat Isot 67:67–75. doi: 10.1016/j.apradiso.2009.03.087 CrossRefGoogle Scholar
  90. 90.
    Cova E, Ghiroldi A, Guareschi S et al (2010) G93A SOD1 alters cell cycle in a cellular model of amyotrophic lateral sclerosis. Cell Signal 22(10):1477–1484. doi: 10.1016/j.cellsig.2010.05.016 PubMedCrossRefGoogle Scholar
  91. 91.
    Zucca E, Bertoletti F, Wimmer U et al (2013) Silencing of human DNA polymerase λ causes replication stress and is synthetically lethal with an impaired S phase checkpoint. Nucleic Acids Res 41(1):229–241. doi: 10.1093/nar/gks1016 PubMedCrossRefGoogle Scholar
  92. 92.
    Terranova N, Rebuzzini P, Mazzini G et al (2014) Mathematical modeling of growth and death dynamics of mouse embryonic stem cells irradiated with γ-rays. J Theoret Biol. doi: 10.1016/j.jtbi.2014.08.042 Google Scholar
  93. 93.
    Paolini A, Curti V, Pasi F et al (2015) Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol. doi: 10.3892/ijo.2015.2864 PubMedPubMedCentralGoogle Scholar
  94. 94.
    Prenna G, Mazzini G, Bottiroli G et al (1976) Automated determination of DNA cellular content (Feulgen) by using BBT-SO2 in flow-cytofluorometry. In: Göhde W, Schumann J, Büchner T (eds) Flow-through cytophotometry, its application to cancer research and hematology. European Press, Medikon, Ghent, pp 88–95Google Scholar
  95. 95.
    Del Bino G, Bruni C, Koch G et al (1985) Validation of a mathematical procedure for computer analysis of flow cytometric DNA data in human tumors. Cytometry 6(1):31–36. doi: 10.1002/cyto.990060107 PubMedCrossRefGoogle Scholar
  96. 96.
    Giordano M, Danova M, Riccardi A et al (1989) Simultaneous detection of cellular ras p21 oncogene product and DNA content by two-parameter flow cytometry. Anticancer Res 9(3):799–803PubMedGoogle Scholar
  97. 97.
    Danova M, Pellicciari C, Bottone MG et al (1994) Multiparametric assessment of the cell-cycle effects of tamoxifen on MCF-7 human breast-cancer cells. Oncol Rep 1(4):739–745PubMedGoogle Scholar
  98. 98.
    Tirindelli Danesi D, Spanò M, Altavista P et al (1997) Quality control study of the Italian Group of Cytometry on flow cytometry DNA content measurements: II. Factors affecting inter- and intralaboratory variability. Cytometry 30(2):85–97PubMedCrossRefGoogle Scholar
  99. 99.
    Tavecchio M, Simone M, Bernasconi S et al (2008) Multi-parametric flow cytometric cell cycle analysis using TO-PRO-3 iodide (TP3): detailed protocols.". Acta Histochem 110(3):232–244. doi: 10.1016/j.acthis.2007.10.007 PubMedCrossRefGoogle Scholar
  100. 100.
    Chiozzi V, Mazzini G, Oldani A et al (2009) Relationship between Vac A toxin and ammonia in Helicobacter pylori-induced apoptosis in human gastric epithelial cells. J Physiol Pharmacol 60(3):23–30PubMedGoogle Scholar
  101. 101.
    Barbieri G, Palumbo S, Gabrusiewicz K et al (2011) Silencing of cellular prion protein (PrPC) expression by DNA-antisense oligonucleotides induces autophagy-dependent cell death in glioma cells. Autophagy 7(8):840–853PubMedCrossRefGoogle Scholar
  102. 102.
    Giansanti V, Tillhon M, Mazzini G et al (2011) Killing of tumor cells: a drama in two acts. Biochem Pharmacol 82(10):1304–1310. doi: 10.1016/j.bcp.2011.05.023 PubMedCrossRefGoogle Scholar
  103. 103.
    Aredia F, Giansanti V, Mazzini G et al (2013) Multiple effects of the Na(+)/H (+) antiporter inhibitor HMA on cancer cells. Apoptosis. doi: 10.1007/s10495-013-0898-3 PubMedGoogle Scholar
  104. 104.
    Ferrara F, Daverio R, Mazzini G et al (1997) Automation of human sperm cell analysis by flow cytometry. Clin Chem 43(5):801–807PubMedGoogle Scholar
  105. 105.
    Cova E, Cereda C, Galli A et al (2006) Modified expression of Bcl-2 and SOD1 proteins in lymphocytes from sporadic ALS patients. Neurosci Lett 399(3):186–190. doi: 10.1016/j.neulet.2006.01.057 PubMedCrossRefGoogle Scholar
  106. 106.
    Fassina L, Saino E, Visai L et al (2008) Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds. J Biomed Mat Res 87(3):750–759. doi: 10.1002/jbm.a.31827 CrossRefGoogle Scholar
  107. 107.
    Donati G, Brighenti E, Vici M et al (2011) Selective inhibition of rRNA transcription downregulates E2F-1: a new p53-independent mechanism linking cell growth to cell proliferation. J Cell Science 124:3017–3028. doi: 10.1242/jcs.086074 PubMedCrossRefGoogle Scholar
  108. 108.
    Riva F, Omes C, Bassani R et al (2014) In-vitro culture system for mesenchymal progenitor cells derived from waste human ovarian follicular fluid. Reprod Biomed. doi: 10.1016/j.rbmo.2014.06.006 Google Scholar
  109. 109.
    Cansolino L, Clerici AM, Zonta C et al (2015) Comparative study of the radiobiological effects induced on adherent vs suspended cells by BNCT, neutrons and gamma rays treatments.". Appl Radiat Isot. doi: 10.1016/j.apradiso.2015.07.054 PubMedGoogle Scholar
  110. 110.
    Mazzini G, Carpignano F, Surdo S et al (2015) 3D silicon microstructures: a new tool for evaluating biological aggressiveness of tumor cells. IEEE Trans Nanobiosciences 7:797–805. doi: 10.1109/TNB.2015.2476351 CrossRefGoogle Scholar
  111. 111.
    Aredia F, Carpignano F, Surdo S et al (2016) An innovative cell microincubator for drug discovery based on 3D silicon structures. J Nanomat doi. doi: 10.1155/2016/8236539 Google Scholar
  112. 112.
    Danova M, Riccardi A, Mazzini G (1990) Cell cycle-related proteins and flow cytometry. Haematol 75(3):252–264Google Scholar
  113. 113.
    Danova M, Riccardi A, Ucci G et al (1990) Ras oncogene expression and DNA content in plasma cell dyscrasias: a flow cytofluorimetric study. Brit J Cancer 62(5):781–785PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rosti V, Bergamaschi G, Lucotti C et al (1995) Oligodeoxynucleotides antisense to c-abl specifically inhibit entry into S-phase of CD34+ hematopoietic cells and their differentiation to granulocyte-macrophage progenitors. Blood 86(9):3387–3393PubMedGoogle Scholar
  115. 115.
    Cavalli C, Danova M, Gobbi P et al (1989) Ploidy and proliferative activity measurement by flow cytometry in non-Hodgkin's lymphomas. Do speculative aspects prevail over clinical ones? Europ J Cancer Clin Oncol 25(12):1755–1763PubMedCrossRefGoogle Scholar
  116. 116.
    Giaretti W, Danova M, Geido E et al (1991) Flow cytometric DNA index in the prognosis of colorectal cancer. Cancer 67(7):1921–1927PubMedCrossRefGoogle Scholar
  117. 117.
    Mazzini G, Danova M (1994) Citometria a flusso: applicazioni cliniche dell’analisi del DNA in oncologia. Collana “I Manuali delle Scuole”. Manuale Ph.D. 08. Scuola Superiore Oncologia e Scienze Biomediche. GenovaGoogle Scholar
  118. 118.
    Danova M, Rosti V, Mazzini G et al (1995) Cell kinetics of CD34-positive hematopoietic cells following chemotherapy plus colony-stimulating factors in advanced breast cancer. Internat J Cancer 63(5):646–651CrossRefGoogle Scholar
  119. 119.
    Danova M, Mazzini G, Alberici R et al (1996) Sequential administration of interleukin-3 and granulocyte-macrophage colony-stimulating factor following intensified, accelerated CEE (cyclophosphamide, epirubicin, etoposide) chemotherapy in patients with solid tumors. Internat J Oncol 9(5):971–976Google Scholar
  120. 120.
    Bozzetti C, Nizzoli R, Naldi N et al (1996) Nuclear grading and flow cytometric DNA pattern in fine-needle aspirates of primary breast cancer.". Diagn Cytopath 15(2):116–120. doi: 10.1002/(SICI)1097-0339(199608)15:2<116::AID-DC6>3.0.CO;2-G CrossRefGoogle Scholar
  121. 121.
    Casasco A, Casasco M, Calligaro A (1997) Cell proliferation in developing human dental pulp. A combined flow cytometric and immunohistochemical study. Europ J Oral Sci 105(6):609–613CrossRefGoogle Scholar
  122. 122.
    Oliani C, Barana D, Cazzadori A et al (2005) Cytofluorimetric evaluation of DNA ploidy in lung cancer: a bronchoscopic study. Internat J Biol Markers 20(2):87–92CrossRefGoogle Scholar
  123. 123.
    Bozzetti C, Nizzoli R, Camisa R et al (1997) Comparison between Ki-67 index and S-phase fraction on fine-needle aspiration samples from breast carcinoma. Cancer 81(5):287–292PubMedCrossRefGoogle Scholar
  124. 124.
    Danova M, Riccardi A, Gaetani P et al (1988) Cell kinetics of human brain tumors: in vivo study with bromodeoxyuridine and flow cytometry. Europ J Cancer Clin Oncol 24(5):873–880PubMedCrossRefGoogle Scholar
  125. 125.
    Riccardi A, Danova M, Wilson G et al (1988) Cell kinetics in human malignancies studied with in vivo administration of bromodeoxyuridine and flow cytometry. Cancer Res 48(21):6238–6245PubMedGoogle Scholar
  126. 126.
    Riccardi A, Danova M, Dionigi P et al (1989) Cell kinetics in leukaemia and solid tumours studied with in vivo bromodeoxyuridine and flow cytometry. Brit J Cancer 59(6):898–903PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Giordano M, Riccardi A, Danova M et al (1991) Cell proliferation of human leukemia and solid tumors studied with in vivo bromodeoxyuridine and flow cytometry. Cancer Detect Prev 15(5):391–396PubMedGoogle Scholar
  128. 128.
    Giordano M, Danova M, Mazzini G et al (1993) Cell kinetics with in vivo: bromodeoxyuridine assay, proliferating cell nuclear antigen expression, and flow cytometric analysis. Prognostic significance in acute nonlymphoblastic leukemia. Cancer 71(9):2739–2745PubMedCrossRefGoogle Scholar
  129. 129.
    Erba E, Giordano M, Danova M et al (1994) Cell kinetics of human ovarian cancer with in vivo administration of bromodeoxyuridine. Ann Oncol 5(7):627–634PubMedCrossRefGoogle Scholar
  130. 130.
    Mazzini G, Danova M, Ferrari C et al (1996) Cell proliferation and ploidy of human solid tumours: methodological experience with in vivo bromodeoxyuridine and DNA flow cytometry. Analyt Cell Path 10(2):101–113Google Scholar
  131. 131.
    Chang Q, Hedley D (2012) Emerging applications of flow cytometry in solid tumor biology. Methods 57:359–367PubMedCrossRefGoogle Scholar
  132. 132.
    Danova M, Mazzini G, Wilson G et al (1987) Ploidy and proliferative activity of human gastric carcinoma: a cytofluorometric study on fresh and on paraffin embedded material. Bas Appl Histochem 31(1):73–82Google Scholar
  133. 133.
    Woo J, Baumann A, Arguello V (2014) Recent advancements of flow cytometry: new applications in hematology and oncology. Exp Rev Mol Diagn 14:67–81CrossRefGoogle Scholar
  134. 134.
    Danova M, Torchio M, Mazzini G (2011) Isolation of rare circulating tumor cells in cancer patients: technical aspects and clinical implications. Exp Rev Mol Diagn 11(5):473–485. doi: 10.1586/erm.11.33 CrossRefGoogle Scholar
  135. 135.
    Manzoni M, Comolli G, Torchio M (2014) Circulating endothelial cells and their subpopulations: role as predictive biomarkers in antiangiogenic therapy for colorectal cancer. Clin Col Cancer. doi: 10.1016/j.clcc.2014.12.002 Google Scholar
  136. 136.
    Kim KH, Sederstrom JM (2015) Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol doi. doi: 10.1002/0471142727 Google Scholar
  137. 137.
    Robinson JP, Roederer M (2015) History of science. Flow cytometry strikes gold. Science 350(6262):739–740. doi: 10.1126/science.aad6770 PubMedCrossRefGoogle Scholar
  138. 138.
    Adan A, Alizada G, Kiraz Y et al (2016) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 14:1–14Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute of Molecular GeneticsCNRPaviaItaly
  2. 2.Department of Biology and Biotechnology “Lazzaro Spallanzani”University of PaviaPaviaItaly
  3. 3.Department of MedicineAzienda Socio-Sanitaria Territoriale of PaviaPaviaItaly

Personalised recommendations