Nile Red Staining of Neutral Lipids in Yeast

  • Kerry Ann Rostron
  • Clare Louise LawrenceEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1560)


Determination of cellular neutral lipid levels in yeast is important for both the biotechnology industry and biomedical research. However, many of the currently available methods are labor intensive and time consuming. Here we describe a rapid and repeatable method for the detection of neutral lipids, which can be utilized in both oleaginous and non-oleaginous yeast species. The method utilizes the fluorescent dye, Nile red, which enables neutral lipid levels to either be visualized via microscopy or quantified using a 96-well plate assay.

Key words

Nile red Neutral lipids Microscopy Microplate Yeast 



This work was supported by The University of Central Lancashire and Brain Tumour North West. The authors would like to acknowledge Dr. Gail Welsby and Dr. Vicky Jones for assistance with microscopy, Mr. Tony Dickson for technical assistance, and Dr. Christopher Smith for support with statistical analysis.


  1. 1.
    Hutchins PM, Barkley RM, Murphy RC (2008) Separation of cellular nonpolar neutral lipids by normal-phase chromatography and analysis by electrospray ionization mass spectrometry. J Lipid Res 49:804–813PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Santamauro F, Whiffin FM, Scott RJ et al (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol Biofuels 7:34PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Di Paolo G, Kim TW (2011) Linking lipids to Alzheimer's disease: cholesterol and beyond. Nat Rev Neurosci 12:284–296PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Oresic M, Simell S, Sysi-Aho M et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205:2975–2984PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Zhang F, Du G (2012) Dysregulated lipid metabolism in cancer. World J Biol Chem 3:167–174PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nielsen J (2009) Systems biology of lipid metabolism: from yeast to human. FEBS Lett 583:3905–3913PubMedCrossRefGoogle Scholar
  7. 7.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. C J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  8. 8.
    Shahidi F (2001) Extraction and measurement of total lipids. In current protocols in food analytical chemistry. John Wiley, New York, NYGoogle Scholar
  9. 9.
    Iverson S, Lang SC, Cooper M (2001) Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287PubMedCrossRefGoogle Scholar
  10. 10.
    Sitepu IR, Ignatia L, Franz AK et al (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91:321–328PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sitepu IR, Jin M, Fernandez JE et al (2014) Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover. Appl Microbiol Biotechnol 98:7645–7657PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Adeyo O, Horn PJ, Lee S et al (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Grimard V, Massier J, Richter D et al (2008) siRNA screening reveals JNK2 as an evolutionary conserved regulator of triglyceride homeostasis. J Lipid Res 49:2427–2440PubMedCrossRefGoogle Scholar
  14. 14.
    Sorger D, Athenstaedt K, Hrastnik C et al (2004) A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 279:31190–31196PubMedCrossRefGoogle Scholar
  15. 15.
    Rostron K, Rolph C, Lawrence CL (2015) Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe. Antonie Van Leeuwenhoek 108:97–106PubMedCrossRefGoogle Scholar
  16. 16.
    Lemieux GA, Liu J, Mayer N et al (2011) A whole-organism screen identifies new regulators of fat storage. Nat Chem Biol 7:206–213PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Soukas AA, Carr CE, Ruvkun G (2013) Genetic regulation of Caenorhabditis elegans lysosome related organelle function. PLoS Genet 9, e1003908PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Reis T, Van Gilst MR, Hariharan IK (2010) A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability. PLoS Genet 6, e1001206PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zuriani R, Vigneswari S, Azizan MNM et al (2013) A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnol Bioproc E 18:472–478CrossRefGoogle Scholar
  20. 20.
    Flynn EJ III, Trent CM, Rawls JF (2009) Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res 50:1641–1652PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chen W, Zhang C, Song L, Sommerfeld M et al (2009) A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Meth 77:41–47CrossRefGoogle Scholar
  22. 22.
    Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973PubMedCrossRefGoogle Scholar
  23. 23.
    Drabsch Y, Ramsay R, Gonda T (2010) MYB suppresses differentiation and apoptosis of human breast cancer cells. Breast Cancer Res 12:R55PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Yao HR, Liu J, Plumeri D et al (2011) Lipotoxicity in HepG2 cells triggered by free fatty acids. Am J Transl Res 3:284–291PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dey P, Chakraborty M, Kamdar MR et al (2014) Functional characterization of two structurally novel diacylglycerol acyltransferase2 isozymes responsible for the enhanced production of stearate-rich storage lipid in Candida tropicalis SY005. PLoS One 9, e94472PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePreston, LancashireUK
  2. 2.School of Biological SciencesUniversity of ReadingReading, BerkshireUK
  3. 3.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePreston, LancashireUK

Personalised recommendations