Skip to main content
Book cover

Inflammation pp 137–168Cite as

Subcutaneous and Sublingual Immunotherapy in a Mouse Model of Allergic Asthma

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1559))

Abstract

Allergic asthma, caused by inhaled allergens such as house dust mite or grass pollen, is characterized by reversible airway obstruction, associated with an eosinophilic inflammation of the airways, as well as airway hyper responsiveness and remodeling. The inhaled allergens trigger a type-2 inflammatory response with involvement of innate lymphoid cells (ILC2) and Th2 cells, resulting in high production of immunoglobulin E (IgE) antibodies. Consequently, renewed allergen exposure results in a classic allergic response with a distinct early and late phase, both resulting in bronchoconstriction and shortness of breath. Allergen specific immunotherapy (AIT) is the only treatment that is capable of modifying the immunological process underlying allergic responses including allergic asthma and both subcutaneous AIT (SCIT) as well as sublingual AIT (SLIT) have proven clinical efficacy in long term suppression of the allergic response. Although these treatments are very successful for rhinitis, application of AIT in asthma is hampered by variable efficacy, long duration of treatment, and the risk of severe side-effects. A more profound understanding of the mechanisms by which AIT achieves tolerance to allergens in sensitized individuals is needed to improve its efficacy. Mouse models have been very valuable as a preclinical model to characterize the mechanisms of desensitization in AIT and to evaluate novel approaches for improved efficacy. Here, we present a rapid and reproducible mouse model for allergen-specific immunotherapy. In this model, mice are sensitized with two injections of allergen absorbed to aluminum hydroxide to induce allergic sensitization, followed by subcutaneous injections (SCIT) or sublingual administrations (SLIT) of the allergen as immunotherapy treatment. Finally, mice are challenged by three intranasal allergen administrations. We will describe the protocols as well as the most important read-out parameters including measurement of invasive lung function measurements, serum immunoglobulin levels, isolation of broncho-alveolar lavage fluid (BALF), and preparation of cytospins. Moreover, we describe how to restimulate lung single cell suspensions, perform flow cytometry measurements to identify populations of relevant immune cells, and perform ELISAs and Luminex assays to measure the cytokine concentrations in BALF and lung tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11:577–584. doi:10.1038/ni.1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weiss ST, Litonjua AA, Lange C, Lazarus R, Liggett SB, Bleecker ER, Tantisira KG (2006) Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics J 6:311–326. doi:10.1038/sj.tpj.6500387

    CAS  PubMed  Google Scholar 

  3. Lambrecht BN, Hammad H (2014) The immunology of asthma. Nat Immunol 16:45–56. doi:10.1038/ni.3049

    Article  Google Scholar 

  4. Holgate ST, Polosa R (2008) Treatment strategies for allergy and asthma. Nat Rev Immunol 8:218–230. doi:10.1038/nri2262

    Article  CAS  PubMed  Google Scholar 

  5. Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS, Canadian Critical Care Trials Group (2011) Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med 354:683–693. doi:10.1056/NEJMoa1207363

    Google Scholar 

  6. Zeiger RS, Mauger D, Bacharier LB, Guilbert TW, Martinez FD, Lemanske RF, Strunk RC, Covar R, Szefler SJ, Boehmer S, Jackson DJ, Sorkness CA, Gern JE, Kelly HW, Friedman NJ, Mellon MH, Schatz M, Morgan WJ, Chinchilli VM, Raissy HH, Bade E, Malka-Rais J, Beigelman A, Taussig LM (2011) Daily or intermittent budesonide in preschool children with recurrent wheezing. N Engl J Med 365:1999–2001. doi:10.1056/NEJMoa1104647

    Article  Google Scholar 

  7. Hancox RJ, Cowan JO, Flannery EM, Herbison GP, McLachlan CR, Taylor DR (2000) Bronchodilator tolerance and rebound bronchoconstriction during regular inhaled beta-agonist treatment. Respir Med 94:767–771. doi:10.1053/rmed.2000.0820, S0954-6111(00)90820-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Yim RP, Koumbourlis AC (2013) Tolerance & resistance to β2-agonist bronchodilators. Paediatr Respir Rev 14:195–198. doi:10.1016/j.prrv.2012.11.002

    PubMed  Google Scholar 

  9. Jutel M (2014) Allergen-specific immunotherapy in asthma. Curr Treat Options Allergy 1:213–219. doi:10.1007/s40521-014-0013-1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jacobsen L, Niggemann B, Dreborg S, Ferdousi H, Halken S, Høst A, Koivikko A, Norberg LA, Valovirta E, Wahn U, Möller C (2007) Specific immunotherapy has long-term preventive effect of seasonal and perennial asthma: 10-year follow-up on the PAT study. Allergy 62:943–948. doi:10.1111/j.1398-9995.2007.01451.x

    Article  CAS  PubMed  Google Scholar 

  11. Abramson MJ, Puy RM, Weiner JM (2010) Injection allergen immunotherapy for asthma. Cochrane Database Syst Rev (8):CD001186. doi:10.1002/14651858.CD001186.pub2

    Google Scholar 

  12. Mosbech H, Deckelmann R, De Blay F, Pastorello EA, Trebas-Pietras E, Andres LP, Malcus I, Ljørring C, Canonica GW (2014) Standardized quality (SQ) house dust mite sublingual immunotherapy tablet (ALK) reduces inhaled corticosteroid use while maintaining asthma control: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol. doi:10.1016/j.jaci.2014.03.019

    PubMed  Google Scholar 

  13. Novembre E, Galli E, Landi F, Caffarelli C, Pifferi M, De Marco E, Burastero SE, Calori G, Benetti L, Bonazza P, Puccinelli P, Parmiani S, Bernardini R, Vierucci A (2004) Coseasonal sublingual immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis. J Allergy Clin Immunol 114:851–857. doi:10.1016/j.jaci.2004.07.012

    Article  CAS  PubMed  Google Scholar 

  14. Passalacqua G (2014) Specific immunotherapy in asthma: a comprehensive review. J Asthma 51:29–33. doi:10.3109/02770903.2013.853082

    Article  CAS  PubMed  Google Scholar 

  15. Soyka MB, Van De Veen W, Holzmann D, Akdis M, Akdis CA (2014) Scientific foundations of allergen-specific immunotherapy for allergic disease. Chest 146:1347–1357. doi:10.1378/chest.14-0049

    Article  PubMed  Google Scholar 

  16. Wambre E, Delong JH, James EA, Torres-Chinn N, Pfützner W, Möbs C, Durham SR, Till SJ, Robinson D, Kwok WW (2014) Specific immunotherapy modifies allergen-specific CD4+ T-cell responses in an epitope-dependent manner. J Allergy Clin Immunol 133:872–879. doi:10.1016/j.jaci.2013.10.054

    Article  CAS  PubMed  Google Scholar 

  17. Radulovic S, Jacobson MR, Durham SR, Nouri-Aria KT (2008) Grass pollen immunotherapy induces Foxp3-expressing CD4+ CD25+ cells in the nasal mucosa. J Allergy Clin Immunol 121:1467–1472, 1472.e1. doi:10.1016/j.jaci.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  18. Akdis CA, Akdis M (2015) Advances in allergen immunotherapy : aiming for complete tolerance to allergens. Sci Transl Med 7:1–6. doi:10.1126/scitranslmed.aaa7390

    Article  CAS  Google Scholar 

  19. Nouri-Aria KT, Wachholz PA, Francis JN, Jacobson MR, Walker SM, Wilcock LK, Staple SQ, Aalberse RC, Till SJ, Durham SR (2004) Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol 172:3252–3259. doi:10.4049/jimmunol.172.5.3252

    Article  CAS  PubMed  Google Scholar 

  20. Francis JN, James LK, Paraskevopoulos G, Wong C, Calderon MA, Durham SR, Till SJ (2008) Grass pollen immunotherapy: IL-10 induction and suppression of late responses precedes IgG4 inhibitory antibody activity. J Allergy Clin Immunol 121:1120–1125.e2. doi:10.1016/j.jaci.2008.01.072

    Article  CAS  PubMed  Google Scholar 

  21. Akdis CA, Blesken T, Akdis M, Wüthrich B, Blaser K (1998) Role of interleukin 10 in specific immunotherapy. J Clin Invest 102:98–106. doi:10.1172/JCI2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Epstein TG, Liss GM, Murphy-Berendts K, Bernstein DI (2014) AAAAI/ACAAI surveillance study of subcutaneous immunotherapy, years 2008–2012: an update on fatal and nonfatal systemic allergic reactions. J Allergy Clin Immunol Pract 2:161–167.e3. doi:10.1016/j.jaip.2014.01.004

    Article  PubMed  Google Scholar 

  23. Jacobsen L, Wahn U, Bilo MB (2012) Allergen-specific immunotherapy provides immediate, long-term and preventive clinical effects in children and adults: the effects of immunotherapy can be categorised by level of benefit—the centenary of allergen specific subcutaneous immunotherapy. Clin Transl Allergy 2:8. doi:10.1186/2045-7022-2-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Durham SR, Emminger W, Kapp A, de Monchy JGR, Rak S, Scadding GK, Wurtzen PA, Andersen JS, Tholstrup B, Riis B, Dahl R (2012) SQ-standardized sublingual grass immunotherapy: confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J Allergy Clin Immunol 129:717–725.e5. doi:10.1016/j.jaci.2011.12.973

    Article  PubMed  Google Scholar 

  25. Didier A, Worm M, Horak F, Sussman G, de Beaumont O, Le Gall M, Melac M, Malling H-J (2011) Sustained 3-year efficacy of pre- and coseasonal 5-grass-pollen sublingual immunotherapy tablets in patients with grass pollen-induced rhinoconjunctivitis. J Allergy Clin Immunol 128:559–566. doi:10.1016/j.jaci.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  26. Janssen EM, van Oosterhout AJ, Nijkamp FP, van Eden W, Wauben MH (2000) The efficacy of immunotherapy in an experimental murine model of allergic asthma is related to the strength and site of T cell activation during immunotherapy. J Immunol 165:7207–7214. doi:10.4049/jimmunol.165.12.7207

    Article  CAS  PubMed  Google Scholar 

  27. Janssen EM, Wauben MHM, Jonker EH, Hofman G, Van Eden W, Nijkamp FP, Van Oosterhout AJM (1999) Opposite effects of immunotherapy with ovalbumin and the immunodominant T-cell epitope on airway eosinophilia and hyperresponsiveness in a murine model of allergic asthma. Am J Respir Cell Mol Biol 21:21–29

    Article  CAS  PubMed  Google Scholar 

  28. Shirinbak S, Taher YA, Maazi H, Gras R, van Esch BC, Henricks PA, Samsom JN, Verbeek JS, Lambrecht BN, van Oosterhout AJM, Nawijn MC (2010) Suppression of Th2-driven airway inflammation by allergen immunotherapy is independent of B cell and Ig responses in mice. J Immunol 185:3857–3865. doi:10.4049/jimmunol.0903909

    Article  CAS  PubMed  Google Scholar 

  29. Taher YA, van Esch BC, Hofman GA, Henricks PAJ, van Oosterhout AJM (2008) 1,25-Dihydroxyvitamin D3 potentiates the beneficial effects of allergen immunotherapy in a mouse model of allergic asthma: role for IL-10 and TGF-β. J Immunol 180:5211–5221. doi:10.4049/jimmunol.180.8.5211

    Article  CAS  PubMed  Google Scholar 

  30. Maazi H, Shirinbak S, Willart M, Hammad HM, Cabanski M, Boon L, Ganesh V, Baru AM, Hansen G, Lambrecht BN, Sparwasser T, Nawijn MC, van Oosterhout AJM (2012) Contribution of regulatory T cells to alleviation of experimental allergic asthma after specific immunotherapy. Clin Exp Allergy 42:1519–1528. doi:10.1111/j.1365-2222.2012.04064.x

    Article  CAS  PubMed  Google Scholar 

  31. Vissers JLM, van Esch BC, Hofman GA, van Oosterhout AJM (2005) Macrophages induce an allergen-specific and long-term suppression in a mouse asthma model. Eur Respir J 26:1040–1046. doi:10.1183/09031936.05.00089304

    Article  CAS  PubMed  Google Scholar 

  32. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993. doi:10.1038/nri1246

    Article  CAS  PubMed  Google Scholar 

  33. Jonuleit BH, Schmitt E, Schuler G, Knop J, Enk AH (2000) Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weiner HL (2001) The mucosal milieu creates tolerogenic dendritic cells and TR1 and TH3 regulatory cells. Nat Immunol 2:671–672

    Article  CAS  PubMed  Google Scholar 

  35. Maazi H, Shirinbak S, den Boef LE, Fallarino F, Volpi C, Nawijn MC, van Oosterhout AJ (2013) Cytotoxic T lymphocyte antigen 4-immunoglobulin G is a potent adjuvant for experimental allergen immunotherapy. Clin Exp Immunol 172:113–120. doi:10.1111/cei.12041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan AM, Chen H-C, Pochard P, Eisenbarth SC, Herrick CA, Bottomly HK (2010) TLR4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J Immunol 184:3535–3544. doi:10.4049/jimmunol.0900340

    Article  CAS  PubMed  Google Scholar 

  37. Brimnes J, Kildsgaard J, Jacobi H, Lund K (2007) Sublingual immunotherapy reduces allergic symptoms in a mouse model of rhinitis. Clin Exp Allergy 37:488–497. doi:10.1111/j.1365-2222.2006.02624.x

    Article  CAS  PubMed  Google Scholar 

  38. Robichaud A, Fereydoonzad L, Urovitch IB, Brunet J-D (2015) Comparative study of three flexiVent system configurations using mechanical test loads. Exp Lung Res 41:84–92. doi:10.3109/01902148.2014.971921

    Article  PubMed  Google Scholar 

  39. Twisk JWR (2004) Longitudinal data analysis. A comparison between generalized estimating equations and random coefficient analysis. Eur J Epidemiol 19:769–776

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Laura Hesse is supported by the Dutch Lung Foundation (NAF10.060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn C. Nawijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hesse, L., Nawijn, M.C. (2017). Subcutaneous and Sublingual Immunotherapy in a Mouse Model of Allergic Asthma. In: Clausen, B., Laman, J. (eds) Inflammation. Methods in Molecular Biology, vol 1559. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6786-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6786-5_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6784-1

  • Online ISBN: 978-1-4939-6786-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics