CD95 pp 79-93 | Cite as

CD95-Mediated Calcium Signaling

  • Mehdi Hammadi
  • Vanessa Delcroix
  • Anne-Marie Vacher
  • Thomas Ducret
  • Pierre Vacher
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1557)

Abstract

Intracellular calcium signals regulate cell function and cell survival by controlling many processes. CD95 engagement results in distinct intracellular calcium signals that control the cell fate, apoptosis, or survival, depending on the ligand (membrane or soluble). Intracellular calcium determination is an exquisite readout to explore the molecular mechanisms elicited by CD95 engagement. The most widely applied methods for studying calcium signaling pathways use fluorescent indicators and imaging methods with fluorescence microscopy. This technical approach, however, requires many precautions that we discuss in this chapter.

Key words

Fura2 Fluo2 Rhod2 MitoTracker Mitochondria Pluronic acid® F-127 Confocal microscopy 

Notes

Acknowledgments

This work was supported by INSERM, INCa and Ligue contre le cancer (comité des Pyrénées Atlantiques).

References

  1. 1.
    Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325CrossRefPubMedGoogle Scholar
  2. 2.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529CrossRefPubMedGoogle Scholar
  3. 3.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol 1:11–21CrossRefPubMedGoogle Scholar
  4. 4.
    Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74:595–636PubMedGoogle Scholar
  5. 5.
    Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39:121–132CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38:280–290CrossRefPubMedGoogle Scholar
  7. 7.
    Clapham DE (2007) Calcium signaling. Cell 131:1047–1058CrossRefPubMedGoogle Scholar
  8. 8.
    Stewart TA, Yapa KT, Monteith GR (2015) Altered calcium signaling in cancer cells. Biochim Biophys Acta 1848:2502–2511CrossRefPubMedGoogle Scholar
  9. 9.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefPubMedGoogle Scholar
  10. 10.
    Khadra N, Bresson-Bepoldin L, Chaigne Delalande B, Penna A, Cahalan MD, Ségui B, Levade T, Vacher AM, Reiffers J, Ducret T, Moreau JF, Vacher P, Legembre P (2011) Identification of a CD95-mediated negative feedback loop that hinders the DISC formation through an Orai1-Ca2+-PKCβ2 signaling pathway. Proc Natl Acad Sci U S A 108:19072–19077CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L, Moreau J-F, Hofman P, Vacher P, Legembre P (2011) The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 9:e1001090CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F, Leveque J, Jezequel P, Campion L, Campone M, Ducret T, Macgrogan G, Debure L, Colette Y, Vacher P, Legembre P (2013) CD95L cell surface cleavage triggers a pro-metastatic signalling pathway in triple negative breast cancer. Cancer Res 73:6711–6721CrossRefPubMedGoogle Scholar
  13. 13.
    Schlegel W, Winiger BP, Mollard P, Vacher P, Wuarin F, Zahnd GR, Wollheim CB, Dufy B (1987) Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials. Nature 329:719–721CrossRefPubMedGoogle Scholar
  14. 14.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  15. 15.
    Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X (2013) Pluronic/F127 mixed micelles for the delivery of Docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine 8:73–84PubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen Y, Sha X, Zhang W, Zhong W, Fan Z, Ren Q, Chen Y, Fang X (2013) Pluronic mixed micelles overcoming methotrexate multidrug resistance: in vitro and in vivo evaluation. Int J Nanomedicine 8:1463–1476PubMedPubMedCentralGoogle Scholar
  17. 17.
    Alakhova DY, Kabanov AV (2014) Pluronics and MDR reversal: an update. Mol Pharm 11:2566–2578CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Mehdi Hammadi
    • 1
  • Vanessa Delcroix
    • 1
  • Anne-Marie Vacher
    • 1
  • Thomas Ducret
    • 1
  • Pierre Vacher
    • 1
  1. 1.INSERM U1218Bordeaux CedexFrance

Personalised recommendations