CD95 pp 153-171 | Cite as

Sketching of CD95 Oligomers by In Silico Investigations

  • Nicolas LevoinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1557)


This work aimed at building a 3D model of trimeric apo CD95. By combining different molecular modeling approaches and experimental information, we have been able to obtain a consensual organization of the complex. Our strategy permitted the construction of a plausible trimer, and to sketch the interface between protomers. The final model will guide further experimental investigations and understanding of CD95 structure and functions.

Key words

CD95 Fas Homooligomer Trimer Protein model Model building 


  1. 1.
    Nagata S (1997) Apoptosis by death factor. Cell 88(3):355–365CrossRefPubMedGoogle Scholar
  2. 2.
    Mc Guire C, Beyaert R, van Loo G (2011) Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci 34(12):619–628CrossRefPubMedGoogle Scholar
  3. 3.
    Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P (2015) The role of CD95 and CD95 ligand in cancer. Cell Death Differ 22(5):885–886CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chakrabandhu K, Huault S, Durivault J, Lang K, Ta Ngoc L, Bole A, Doma E, Dérijard B, Gérard J-P, Pierres M, Hueber A-O (2016) An evolution-guided analysis reveals a multi-signaling regulation of Fas by tyrosine phosphorylation and its implication in human cancers. PLoS Biol 14(3):e1002401CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fouqué A, Debure L, Legembre P (2014) The CD95/CD95L signaling pathway: a role in carcinogenesis. Biochim Biophys Acta 1846(1):130–141PubMedGoogle Scholar
  6. 6.
    Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L, Moreau J-F, Hofman P, Vacher P, Legembre P (2011) The naturally processed CD95L elicits a c-Yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 9(6):e1001090CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Edmond V, Ghali B, Penna A, Taupin J-L, Daburon S, Moreau J-F, Legembre P (2012) Precise mapping of the CD95 pre-ligand assembly domain. PLoS One 7(9):e46236CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fu Q, Fu T-M, Cruz AC, Sengupta P, Thomas SK, Wang S, Siegel RM, Wu H, Chou JJ (2016) Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor. Mol Cell 61(4):602–613CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Siegel RM, Frederiksen JK, Zacharias DA, Chan FK-M, Johnson M, Lynch D, Tsien RY, Lenardo MJ (2000) Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288(5475):2354–2357CrossRefPubMedGoogle Scholar
  10. 10.
    Consortium TU (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(D1):D204–D212CrossRefGoogle Scholar
  11. 11.
    Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S-I, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66(2):233–243CrossRefPubMedGoogle Scholar
  12. 12.
    Papoff G, Hausler P, Eramo A, Pagano MG, Di Leve G, Signore A, Ruberti G (1999) Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor. J Biol Chem 274(53):38241–38250CrossRefPubMedGoogle Scholar
  13. 13.
    Chodorge M, Zuger S, Stirnimann C, Briand C, Jermutus L, Grutter MG, Minter RR (2012) A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency. Cell Death Differ 19(7):1187–1195CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384(6610):638–641CrossRefPubMedGoogle Scholar
  15. 15.
    Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457(7232):1019–1022CrossRefPubMedGoogle Scholar
  16. 16.
    Cha S-S, Sung B-J, Kim Y-A, Song Y-L, Kim H-J, Kim S, Lee M-S, Oh B-H (2000) Crystal structure of TRAIL-DR5 complex identifies a critical role of the unique frame insertion in conferring recognition specificity. J Biol Chem 275(40):31171–31177CrossRefPubMedGoogle Scholar
  17. 17.
    Melo F, Feytmans E (1997) Novel knowledge-based mean force potential at atomic level 1. J Mol Biol 267(1):207–222CrossRefPubMedGoogle Scholar
  18. 18.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815CrossRefPubMedGoogle Scholar
  19. 19.
    Brooks B, Brooks C, MacKerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York D, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43(W1):W174–W181CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen R, Weng Z (2002) Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins 47(3):281–294CrossRefPubMedGoogle Scholar
  24. 24.
    Li L, Chen R, Weng Z (2003) RDOCK: refinement of rigid-body protein docking predictions. Proteins 53(3):693–707CrossRefPubMedGoogle Scholar
  25. 25.
    Pierce B, Tong W, Weng Z (2005) M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21(8):1472–1478CrossRefPubMedGoogle Scholar
  26. 26.
    Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67(4):1078–1086CrossRefPubMedGoogle Scholar
  27. 27.
    Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Geometry-based flexible and symmetric protein docking. Proteins 60(2):224–231CrossRefPubMedGoogle Scholar
  28. 28.
    Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Suppl 2):W363–W367CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Suhre K, Sanejouand Y-H (2004) ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32(Suppl 2):W610–W614CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Suhre K, Sanejouand Y-H (2004) On the potential of normal-mode analysis for solving difficult molecular-replacement problems. Acta Cryst D 60(4):796–799CrossRefGoogle Scholar
  31. 31.
    Shen M-Y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chan FK-M, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288(5475):2351–2354CrossRefPubMedGoogle Scholar
  33. 33.
    Forrest LR (2015) Structural symmetry in membrane proteins. Annu Rev Biophys 44(1):311–337CrossRefPubMedGoogle Scholar
  34. 34.
    André I, Strauss CEM, Kaplan DB, Bradley P, Baker D (2008) Emergence of symmetry in homooligomeric biological assemblies. Proc Natl Acad Sci 105(42):16148–16152CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29(1):105–153CrossRefPubMedGoogle Scholar
  36. 36.
    Naismith JH, Devine TQ, Brandhuber BJ, Sprang SR (1995) Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J Biol Chem 270(22):13303–13307CrossRefPubMedGoogle Scholar
  37. 37.
    Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M (2002) Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins 48(4):682–695CrossRefPubMedGoogle Scholar
  38. 38.
    Tama F, Sanejouand Y-H (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14(1):1–6CrossRefPubMedGoogle Scholar
  39. 39.
    Liu W, Ramagopal U, Cheng H, Bonanno JB, Toro R, Bhosle R, Zhan C, Almo SC (2016) Crystal Structure of the Complex of Human FasL and Its Decoy Receptor DcR3.Structure. 2016 24(11):2016–2023Google Scholar
  40. 40.
    Mintseris J, Pierce B, Wiehe K, Anderson R, Chen R, Weng Z (2007) Integrating statistical pair potentials into protein complex prediction. Proteins 69:511–520CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Bioprojet-BiotechSaint GregoireFrance

Personalised recommendations