CD95 pp 139-151 | Cite as

Quantifying CD95/cl-CD95L Implications in Cell Mechanics and Membrane Tension by Atomic Force Microscopy Based Force Measurements

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1557)

Abstract

Atomic force microscopy (AFM) is an invaluable tool to investigate the structure of biological material surfaces by imaging them at nanometer scale in physiological conditions. It can also be used to measure the forces and mechanics from single molecule interaction to cell–cell adhesion. Here, we present a methodology that allows to quantify cell elastic properties (using the Young modulus) and cell membrane tension modulated by CD95/cl-CD95L interactions by coupling nanoindentation and membrane tube pulling using suitably decorated AFM levers.

Key words

Atomic force microscopy Elasticity Young modulus Membrane tubes Membrane tension Cytoskeleton 

Notes

Acknowledgments

Funding: PhysCancer “H + -cancer” (to L. Counillon and PHP). InCa PLBiol 2014 (to P. Legembre and PHP). Labex INFORM (ANR-11-LABX-0054) and A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government program managed by the French National Research Agency (ANR) (to Inserm U1067 Lab and as PhD grant to AS).

Providing material or technical help: M. Biarnes-Pelicot (U1067, Marseille), L. Counillon (Nice), A. Fouqué & P. Legembre (Rennes).

Discussions and comments on the manuscript: L. Limozin (U1067, Marseille), L. Counillon (Univ. Nice) and P. Legembre (Rennes).

Platforms: cell culture platform “PCC” (Luminy Campus, Marseille)—L. Borge

Companies: JPK Instruments (Berlin, Germany) for continuous support and generous help.

References

  1. 1.
    Fouqué A, Debure L, Legembre P (2014) The CD95/CD95L signaling pathway: a role in carcinogenesis. Biochim Biophys Acta BBA Rev Cancer 1846:130–141CrossRefGoogle Scholar
  2. 2.
    Tauzin S et al (2011) The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 9:e1001090CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Edmond V et al (2015) Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility. Oncogene 34:996–1005CrossRefPubMedGoogle Scholar
  4. 4.
    Sok M, Sentjurc M, Schara M, Stare J, Rott T (2002) Cell membrane fluidity and prognosis of lung cancer. Ann Thorac Surg 73:1567–1571CrossRefPubMedGoogle Scholar
  5. 5.
    Billaudeau C et al (2013) Probing the plasma membrane organization in living cells by spot variation fluorescence correlation spectroscopy. Methods Enzymol 519:277–302CrossRefPubMedGoogle Scholar
  6. 6.
    Picas L, Rico F, Deforet M, Scheuring S (2013) Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability. ACS Nano 7:1054–1063CrossRefPubMedGoogle Scholar
  7. 7.
    Gauthier NC, Masters TA, Sheetz MP (2012) Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22:527–535CrossRefPubMedGoogle Scholar
  8. 8.
    Masters TA, Pontes B, Viasnoff V, Li Y, Gauthier NC (2013) Plasma membrane tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical signaling during phagocytosis. Proc Natl Acad Sci U S A 110:11875–11880CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schneider D et al (2013) Tension monitoring during epithelial-to-mesenchymal transition links the switch of phenotype to expression of moesin and cadherins in NMuMG cells. PLoS One 8:e80068CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933CrossRefPubMedGoogle Scholar
  11. 11.
    Franz CM, Puech P-H (2008) Atomic force microscopy: a versatile tool for studying cell morphology. Adhesion and mechanics. Cell Mol Bioeng 1:289–300CrossRefGoogle Scholar
  12. 12.
    Helenius J, Heisenberg C-P, Gaub HE, Muller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791CrossRefPubMedGoogle Scholar
  13. 13.
    Dufrêne YF et al (2011) Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods 8:123–127CrossRefPubMedGoogle Scholar
  14. 14.
    Richelme F, Benoliel AM, Bongrand P (2000) Dynamic study of cell mechanical and structural responses to rapid changes of calcium level. Cell Motil Cytoskeleton 45:93–105CrossRefPubMedGoogle Scholar
  15. 15.
    Guillou L, Babataheri A, Puech P-H, Barakat AI, Husson J (2016) Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 6:21529CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bufi N et al (2015) Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys J 108:2181–2190CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rigato A, Rico F, Eghiaian F, Piel M, Scheuring S (2015) Atomic force microscopy mechanical mapping of micropatterned cells shows adhesion geometry-dependent mechanical response on local and global scales. ACS Nano 9:5846–5856CrossRefPubMedGoogle Scholar
  18. 18.
    Krieg M et al (2008) Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol 10:429–436CrossRefPubMedGoogle Scholar
  19. 19.
    Krieg M, Dunn AR, Goodman MB (2014) Mechanical control of the sense of touch by β-spectrin. Nat Cell Biol 16:224–233CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Diz-Muñoz A et al (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8:e1000544CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu HW, Kuhn T, Moy VT (1998) Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397CrossRefPubMedGoogle Scholar
  22. 22.
    Alcaraz J et al (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Eghiaian F, Rigato A, Scheuring S (2015) Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys J 108:1330–1340CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cazaux S et al (2016) Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy 160:168–181CrossRefPubMedGoogle Scholar
  25. 25.
    MDA-MB-231 ATCC® HTB-26™ Homo sapiens mammary gland/breast. http://www.lgcstandards-atcc.org/Products/All/HTB-26.aspx. Accessed 5 Apr 2016
  26. 26.
    BT-549 ATCC® HTB-122™ Homo sapiens mammary gland; breast d. http://www.lgcstandards-atcc.org/products/all/HTB-122.aspx?geo_country=fr. Accessed 5 Apr 2016
  27. 27.
    Puech P-H et al (2005) Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J Cell Sci 118:4199–4206CrossRefPubMedGoogle Scholar
  28. 28.
    Ulrich F et al (2005) Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev Cell 9:555–564CrossRefPubMedGoogle Scholar
  29. 29.
    Evans E, Kinoshita K (2007) Using force to probe single-molecule receptor-cytoskeletal anchoring beneath the surface of a living cell. Methods Cell Biol 83:373–396CrossRefPubMedGoogle Scholar
  30. 30.
    Butt H-J, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1CrossRefGoogle Scholar
  31. 31.
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53CrossRefPubMedGoogle Scholar
  32. 32.
    Brochard-Wyart F, Borghi N, Cuvelier D, Nassoy P (2006) Hydrodynamic narrowing of tubes extruded from cells. Proc Natl Acad Sci U S A 103:7660–7663CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bilodeau G (1992) Regular pyramid punch problem. J Appl Mech Trans ASME 59:519–523CrossRefGoogle Scholar
  34. 34.
    Crick SL, Yin FC-P (2007) Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech Model Mechanobiol 6:199–210CrossRefPubMedGoogle Scholar
  35. 35.
    Sariisik E et al (2015) Decoding cytoskeleton-anchored and non-anchored receptors from single-cell adhesion force data. Biophys J 109:1330–1333CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hochmuth FM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    BiostaTGV—Statistiques en ligne. http://marne.u707.jussieu.fr/biostatgv/. Accessed 30 Mar 2016

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Aix Marseille Université, LAI UM 61MarseilleFrance
  2. 2.Inserm, UMR_S 1067MarseilleFrance
  3. 3.CNRS, UMR 7333MarseilleFrance
  4. 4.Laboratoire Adhésion et Inflammation (LAI)Case 937 - 163Marseille Cedex 09France

Personalised recommendations