CD95 pp 103-110 | Cite as

Study of the CD95-Mediated Non-apoptotic Signaling Pathway: PI3K

  • Amélie Fouqué
  • Patrick Legembre
Part of the Methods in Molecular Biology book series (MIMB, volume 1557)


CD95 is a plasma membrane receptor that belongs to the TNF receptor family (Itoh and Nagata, J Biol Chem 268(15):10932–10937, 1993; Trauth et al., Science 245(4915):301–305, 1989). Accumulating evidence indicate that this so-called death receptor can also trigger non-apoptotic signaling pathways promoting inflammation and oncogenesis (Barnhart et al., Embo J 23(15):3175–3185, 2004; Chen et al., Nature 465(7297):492-496, 2010; Legembre et al., Cell Cycle 3(10):1235–1239, 2004; Legembre et al., EMBO Rep 5(11):1084–1089, 2004; Malleter et al., Cancer Res 73(22):6711-6721, 2013; Tauzin et al., PLoS Biol 9(6):e1001090, 2011). We and others demonstrated that CD95 implements the PI3K signaling pathway through the formation of a molecular complex designated Motility Inducing Signaling Complex (MISC) contributing to cell survival, growth, proliferation, differentiation and motility (Malleter et al., Cancer Res 73(22):6711-6721, 2013; Tauzin et al., PLoS Biol 9(6):e1001090, 2011; Kleber et al., Cancer Cell 13(3):235–248, 2008). This chapter describes how to immunoprecipitate CD95 to characterize MISC involved in PI3K activation.

Key words

Tumor Necrosis factor PI3K activation CD95 implements Fas PI3K Akt Phosphorylation Western blot 


  1. 1.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776CrossRefPubMedGoogle Scholar
  2. 2.
    Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268(15):10932–10937PubMedGoogle Scholar
  3. 3.
    Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245(4915):301–305CrossRefPubMedGoogle Scholar
  4. 4.
    Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75(6):1169–1178CrossRefPubMedGoogle Scholar
  5. 5.
    Matsuno H, Yudoh K, Watanabe Y, Nakazawa F, Aono H, Kimura T (2001) Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand. J Rheumatol 28(1):22–28PubMedGoogle Scholar
  6. 6.
    Vargo-Gogola T, Crawford HC, Fingleton B, Matrisian LM (2002) Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Arch Biochem Biophys 408(2):155–161CrossRefPubMedGoogle Scholar
  7. 7.
    Kiaei M, Kipiani K, Calingasan NY, Wille E, Chen J, Heissig B, Rafii S, Lorenzl S, Beal MF (2007) Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 205(1):74–81CrossRefPubMedGoogle Scholar
  8. 8.
    Schulte M, Reiss K, Lettau M, Maretzky T, Ludwig A, Hartmann D, de Strooper B, Janssen O, Saftig P (2007) ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ 14(5):1040–1049PubMedGoogle Scholar
  9. 9.
    Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187(8):1205–1213CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    O’Reilly LA, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, Haynes NM, Tarlinton DM, Zhang JG, Belz GT, Smyth MJ, Bouillet P, Robb L, Strasser A (2009) Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461(7264):659–663CrossRefGoogle Scholar
  11. 11.
    Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J 23(15):3175–3185CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Legembre P, Barnhart BC, Zheng L, Vijayan S, Straus SE, Puck J, Dale JK, Lenardo M, Peter ME (2004) Induction of apoptosis and activation of NF-kappaB by CD95 require different signalling thresholds. EMBO Rep 5(11):1084–1089CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Malleter M, Tauzin S, Bessede A, Castellano R, Goubard A, Godey F, Leveque J, Jezequel P, Campion L, Campone M, Ducret T, Macgrogan G, Debure L, Collette Y, Vacher P, Legembre P (2013) CD95L cell surface cleavage triggers a prometastatic signaling pathway in triple-negative breast cancer. Cancer Res 73(22):6711–6721CrossRefPubMedGoogle Scholar
  14. 14.
    Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L, Moreau JF, Hofman P, Vacher P, Legembre P (2011) The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 9(6):e1001090CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kleber S, Sancho-Martinez I, Wiestler B, Beisel A, Gieffers C, Hill O, Thiemann M, Mueller W, Sykora J, Kuhn A, Schreglmann N, Letellier E, Zuliani C, Klussmann S, Teodorczyk M, Grone HJ, Ganten TM, Sultmann H, Tuttenberg J, von Deimling A, Regnier-Vigouroux A, Herold-Mende C, Martin-Villalba A (2008) Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell 13(3):235–248CrossRefPubMedGoogle Scholar
  16. 16.
    Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5(2):118–125CrossRefPubMedGoogle Scholar
  17. 17.
    Desbarats J, Newell MK (2000) Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6(8):920–923CrossRefPubMedGoogle Scholar
  18. 18.
    Ruan W, Lee CT, Desbarats J (2008) A novel juxtamembrane domain in tumor necrosis factor receptor superfamily molecules activates Rac1 and controls neurite growth. Mol Biol Cell 19(8):3192–3202CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Steller EJ, Ritsma L, Raats DA, Hoogwater FJ, Emmink BL, Govaert KM, Laoukili J, Rinkes IH, van Rheenen J, Kranenburg O (2011) The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion. EMBO Rep 12(9):931–937CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME (2010) CD95 promotes tumour growth. Nature 465(7297):492–496CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Legembre P, Barnhart BC, Peter ME (2004) The relevance of NF-kappaB for CD95 signaling in tumor cells. Cell Cycle 3(10):1235–1239CrossRefPubMedGoogle Scholar
  22. 22.
    Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK (1998) The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci U S A 95(23):13513–13518CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39CrossRefPubMedGoogle Scholar
  24. 24.
    Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16(2):115–125CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269CrossRefPubMedGoogle Scholar
  26. 26.
    Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871CrossRefPubMedGoogle Scholar
  27. 27.
    Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17(15):1829–1834CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD (2001) Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 17:615–675CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Centre Eugène MarquisRennesFrance
  2. 2.INSERM ERL440-OSSEquipe Labellisée Ligue Contre Le CancerRennesFrance
  3. 3.Université de Rennes-1RennesFrance

Personalised recommendations