Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle

  • Francesco Saverio TedescoEmail author
  • Louise A. Moyle
  • Eusebio PerdigueroEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1556)


Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as “collaborators” of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols.

Key words

Skeletal muscle Interstitial cells Pericytes Mesoangioblasts Mesenchymal progenitors Fibro-adipogenic progenitors Pw1 Interstitial cells Stem cells Muscle regeneration 



We thank S. Benedetti, G. Cossu, S. Maffioletti, J. Morgan, E. Rebollo, M. Riminucci, D. Sassoon, and A. Serrano for insightful comments and discussions. E.P. acknowledges funding from MINECO, Spain (SAF2015-67369-R and “María de Maeztu” Programme for Units of Excellence in R&D MDM-2014-0370), AFM, CIBERNED (IntraCIBER 2015-2/06, InterCIBER PIE14/00061). F.S.T. and L.A.M. acknowledge funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 602423 (PluriMes). F.S.T. is funded by a National Institute for Health Research (NIHR) Academic Clinical Fellowship in Paediatrics; the views expressed are those of the author and not necessarily those of the NHS, the NIHR or the Department of Health. Work in the Tedesco laboratory is also funded by the IMI joint undertaking under grant agreement n° 115582 (EU FP7 and EFPIA companies - EBiSC), Takeda New Frontier Science, the UK BBSRC and MRC, Duchenne Parent Project Onlus, Muscular Dystrophy UK, Duchenne Children’s Trust, the Duchenne Research Fund and Fundació La Marató de TV3. F.S.T. dedicates this paper to the late Professor Paolo Bianco, whose ideas and vision on stem cell dynamics in mesodermal tissues have inspired part of this review and will be deeply missed.


  1. 1.
    Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96(3):183–195. doi: 10.1007/s00223-014-9915-y PubMedCrossRefGoogle Scholar
  2. 2.
    Comai G, Tajbakhsh S (2014) Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol 110:1–73. doi: 10.1016/B978-0-12-405943-6.00001-4
  3. 3.
    Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16(8):906–914PubMedCrossRefGoogle Scholar
  4. 4.
    Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. doi: 10.1152/physrev.00043.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. doi: 10.1242/dev.069088 PubMedCrossRefGoogle Scholar
  6. 6.
    Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435(7044):954–958. doi: 10.1038/nature03572 PubMedCrossRefGoogle Scholar
  7. 7.
    Boldrin L, Muntoni F, Morgan JE (2010) Are human and mouse satellite cells really the same? J Histochem Cytochem 58(11):941–955. doi: 10.1369/jhc.2010.956201 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19. doi: 10.1172/JCI40373 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148(1–2):112–125. doi: 10.1016/j.cell.2011.11.049 PubMedCrossRefGoogle Scholar
  10. 10.
    Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357. doi: 10.1083/jcb.200312007jcb.200312007 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786PubMedCrossRefGoogle Scholar
  12. 12.
    Cappellari O, Cossu G (2013) Pericytes in development and pathology of skeletal muscle. Circ Res 113(3):341–347. doi: 10.1161/CIRCRESAHA.113.300203 PubMedCrossRefGoogle Scholar
  13. 13.
    Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4(2). doi: 10.1101/cshperspect.a008342
  14. 14.
    Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. doi: 10.1016/j.devcel.2011.07.001 PubMedCrossRefGoogle Scholar
  15. 15.
    Berry SE (2015) Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions. Stem Cells Transl Med 4(1):91–98. doi: 10.5966/sctm.2014-0060 PubMedCrossRefGoogle Scholar
  16. 16.
    Sambasivan R, Tajbakhsh S (2007) Skeletal muscle stem cell birth and properties. Semin Cell Dev Biol 18(6):870–882. doi: 10.1016/j.semcdb.2007.09.013 PubMedCrossRefGoogle Scholar
  17. 17.
    Judson RN, Zhang RH, Rossi FM (2013) Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs? FEBS J 280(17):4100–4108. doi: 10.1111/febs.12370 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pannerec A, Marazzi G, Sassoon D (2012) Stem cells in the hood: the skeletal muscle niche. Trends Mol Med 18(10):599–606. doi: 10.1016/j.molmed.2012.07.004 PubMedCrossRefGoogle Scholar
  19. 19.
    Rouget C (1873) Mémoire sur le développment, la structure et les propertiés physiologiques des capillaries sanguins et lymphatiques. Arch Physiol Norm Pathol 5:60Google Scholar
  20. 20.
    Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18(4):1397–1409. doi: 10.1091/mbc.E06-08-0693 [pii] E06-08-0693PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267. doi: 10.1038/ncb1542 PubMedCrossRefGoogle Scholar
  22. 22.
    Sims DE (1986) The pericyte--a review. Tissue Cell 18(2):153–174PubMedCrossRefGoogle Scholar
  23. 23.
    Kostallari E, Baba-Amer Y, Alonso-Martin S, Ngoh P, Relaix F, Lafuste P, Gherardi RK (2015) Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development 142(7):1242–1253. doi: 10.1242/dev.115386 PubMedCrossRefGoogle Scholar
  24. 24.
    Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2013) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305(11):C1098–C1113. doi: 10.1152/ajpcell.00171.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579. doi: 10.1038/nature05282 PubMedCrossRefGoogle Scholar
  26. 26.
    Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499. doi: 10.1038/ncomms1508 PubMedCrossRefGoogle Scholar
  27. 27.
    Meng J, Adkin CF, Xu SW, Muntoni F, Morgan JE (2011) Contribution of human muscle-derived cells to skeletal muscle regeneration in dystrophic host mice. PloS One 6(3):e17454. doi: 10.1371/journal.pone.0017454 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, Cossu G, Serafini M, Sampaolesi M, Tagliafico E, Tenedini E, Saggio I, Robey PG, Riminucci M, Bianco P (2016) Mesenchymal Stem Cells. Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels. Stem Cell Reports. 6(6):897–913. doi: 10.1016/j.stemcr.2016.05.011
  29. 29.
    Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304(1):246–259. doi: 10.1016/j.ydbio.2006.12.026 PubMedCrossRefGoogle Scholar
  30. 30.
    Pierantozzi E, Vezzani B, Badin M, Curina C, Severi F, Petraglia F, Randazzo D, Rossi D, Sorrentino V (2016) Tissue-specific cultured human pericytes: perivascular cells from smooth muscle tissue have restricted mesodermal differentiation ability. Stem Cells Dev. doi: 10.1089/scd.2015.0336 PubMedCentralGoogle Scholar
  31. 31.
    De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147(4):869–878PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783PubMedGoogle Scholar
  33. 33.
    Tagliafico E, Brunelli S, Bergamaschi A, De Angelis L, Scardigli R, Galli D, Battini R, Bianco P, Ferrari S, Cossu G, Ferrari S (2004) TGFbeta/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts. J Cell Sci 117(Pt 19):4377–4388. doi: 10.1242/jcs.01291 PubMedCrossRefGoogle Scholar
  34. 34.
    Bonfanti C, Rossi G, Tedesco FS, Giannotta M, Benedetti S, Tonlorenzi R, Antonini S, Marazzi G, Dejana E, Sassoon D, Cossu G, Messina G (2015) PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence. Nature Commun 6:6364. doi: 10.1038/ncomms7364 CrossRefGoogle Scholar
  35. 35.
    Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492. doi: 10.1126/science.1082254 PubMedCrossRefGoogle Scholar
  36. 36.
    Tedesco FS, Hoshiya H, D'Antona G, Gerli MF, Messina G, Antonini S, Tonlorenzi R, Benedetti S, Berghella L, Torrente Y, Kazuki Y, Bottinelli R, Oshimura M, Cossu G (2011) Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med 3(96):96ra78. doi: 10.1126/scitranslmed.3002342 PubMedCrossRefGoogle Scholar
  37. 37.
    Diaz-Manera J, Touvier T, Dellavalle A, Tonlorenzi R, Tedesco FS, Messina G, Meregalli M, Navarro C, Perani L, Bonfanti C, Illa I, Torrente Y, Cossu G (2010) Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy. Cell Death Dis 1:e61. doi: 10.1038/cddis.2010.35 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Giannotta M, Benedetti S, Tedesco FS, Corada M, Trani M, D'Antuono R, Millet Q, Orsenigo F, Galvez BG, Cossu G, Dejana E (2014) Targeting endothelial junctional adhesion molecule-A/EPAC/ Rap-1 axis as a novel strategy to increase stem cell engraftment in dystrophic muscles. EMBO Mol Med 6(2):239–258. doi: 10.1002/emmm.201302520 PubMedGoogle Scholar
  39. 39.
    Berry SE, Liu J, Chaney EJ, Kaufman SJ (2007) Multipotential mesoangioblast stem cell therapy in the mdx/utrn−/− mouse model for Duchenne muscular dystrophy. Regen Med 2(3):275–288. doi: 10.2217/17460751.2.3.275 PubMedCrossRefGoogle Scholar
  40. 40.
    Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M, Roostalu U, Natali Sora MG, Scarlato M, De Pellegrin M, Godi C, Giuliani S, Ciotti F, Tonlorenzi R, Lorenzetti I, Rivellini C, Benedetti S, Gatti R, Marktel S, Mazzi B, Tettamanti A, Ragazzi M, Imro MA, Marano G, Ambrosi A, Fiori R, Sormani MP, Bonini C, Venturini M, Politi LS, Torrente Y, Ciceri F (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528. doi: 10.15252/emmm.201505636 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, Antonini S, Tagliafico E, Artusi V, Longa E, Tonlorenzi R, Ragazzi M, Calderazzi G, Hoshiya H, Cappellari O, Mora M, Schoser B, Schneiderat P, Oshimura M, Bottinelli R, Sampaolesi M, Torrente Y, Broccoli V, Cossu G (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4(140):140ra189. doi: 10.1126/scitranslmed.3003541 CrossRefGoogle Scholar
  42. 42.
    Maffioletti SM, Noviello M, English K, Tedesco FS (2014) Stem cell transplantation for muscular dystrophy: the challenge of immune response. Biomed Res Int 2014:964010. doi: 10.1155/2014/964010 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Noviello M, Tedesco FS, Bondanza A, Tonlorenzi R, Rosaria Carbone M, Gerli MF, Marktel S, Napolitano S, Cicalese MP, Ciceri F, Peretti G, Cossu G, Bonini C (2014) Inflammation converts human mesoangioblasts into targets of alloreactive immune responses: implications for allogeneic cell therapy of DMD. Mol Ther 22(7):1342–1352. doi: 10.1038/mt.2014.62 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Quattrocelli M, Costamagna D, Giacomazzi G, Camps J, Sampaolesi M (2014) Notch signaling regulates myogenic regenerative capacity of murine and human mesoangioblasts. Cell Death Dis 5:e1448. doi: 10.1038/cddis.2014.401 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Costamagna D, Berardi E, Ceccarelli G, Sampaolesi M (2015) Adult stem cells and skeletal muscle regeneration. Curr Gene Ther 15(4):348–363PubMedCrossRefGoogle Scholar
  46. 46.
    Greenhalgh SN, Iredale JP, Henderson NC (2013) Origins of fibrosis: pericytes take centre stage. F1000Prime Rep 5:37. doi: 10.12703/P5-37 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84. doi: 10.1016/j.scr.2012.09.003 PubMedCrossRefGoogle Scholar
  48. 48.
    Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12(2):153–163. doi: 10.1038/ncb2015 ncb2015 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12(2):143–152. doi: 10.1038/ncb2014 ncb2014 [pii]PubMedCrossRefGoogle Scholar
  50. 50.
    Wosczyna MN, Biswas AA, Cogswell CA, Goldhamer DJ (2012) Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 27(5):1004–1017. doi: 10.1002/jbmr.1562 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bianco P (2014) “Mesenchymal” stem cells. Annu Rev Cell Dev Biol 30:677–704. doi: 10.1146/annurev-cellbio-100913-013132 PubMedCrossRefGoogle Scholar
  52. 52.
    Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19(1):35–42. doi: 10.1038/nm.3028 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D, Zhang RH, Natarajan A, Nedospasov SA, Rossi FM (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794. doi: 10.1038/nm.3869 PubMedCrossRefGoogle Scholar
  54. 54.
    Mozzetta C, Consalvi S, Saccone V, Tierney M, Diamantini A, Mitchell KJ, Marazzi G, Borsellino G, Battistini L, Sassoon D, Sacco A, Puri PL (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med 5(4):626–639. doi: 10.1002/emmm.201202096 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Saccone V, Consalvi S, Giordani L, Mozzetta C, Barozzi I, Sandona M, Ryan T, Rojas-Munoz A, Madaro L, Fasanaro P, Borsellino G, De Bardi M, Frige G, Termanini A, Sun X, Rossant J, Bruneau BG, Mercola M, Minucci S, Puri PL (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28(8):841–857. doi: 10.1101/gad.234468.113 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M, Morita M, Yamaguchi A, Yamada H, Nishino I, Hamada Y, Tsuchida K (2014) Identification and characterization of PDGFRalpha+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis 5:e1186. doi: 10.1038/cddis.2014.161 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Arrighi N, Moratal C, Clement N, Giorgetti-Peraldi S, Peraldi P, Loubat A, Kurzenne JY, Dani C, Chopard A, Dechesne CA (2015) Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle. Cell Death Dis 6:e1733. doi: 10.1038/cddis.2015.79 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153(2):376–388. doi: 10.1016/j.cell.2013.02.053 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482–496. doi: 10.1093/hmg/ddn376 ddn376 [pii]PubMedCrossRefGoogle Scholar
  60. 60.
    Dulauroy S, Di Carlo SE, Langa F, Eberl G, Peduto L (2012) Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med 18(8):1262–1270. doi: 10.1038/nm.2848 PubMedCrossRefGoogle Scholar
  61. 61.
    Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637. doi: 10.1242/dev.064162 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pessina P, Kharraz Y, Jardi M, Fukada S, Serrano AL, Perdiguero E, Munoz-Canoves P (2015) Fibrogenic cell plasticity blunts tissue regeneration and aggravates muscular dystrophy. Stem Cell Reports 4(6):1046–1060. doi: 10.1016/j.stemcr.2015.04.007 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zou Y, Zhang RZ, Sabatelli P, Chu ML, Bonnemann CG (2008) Muscle interstitial fibroblasts are the main source of collagen VI synthesis in skeletal muscle: implications for congenital muscular dystrophy types Ullrich and Bethlem. J Neuropathol Exp Neurol 67(2):144–154. doi: 10.1097/nen.0b013e3181634ef7 PubMedCrossRefGoogle Scholar
  64. 64.
    Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, Montemurro F, Tedesco FS, Blaauw B, Cossu G, Vozzi G, Rando TA, Bonaldo P (2013) Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat Commun 4:1964. doi: 10.1038/ncomms2964 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bonnemann CG (2011) The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol 7(7):379–390. doi: 10.1038/nrneurol.2011.81 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cescon M, Gattazzo F, Chen P, Bonaldo P (2015) Collagen VI at a glance. J Cell Sci 128(19):3525–3531. doi: 10.1242/jcs.169748 PubMedCrossRefGoogle Scholar
  67. 67.
    De Palma S, Leone R, Grumati P, Vasso M, Polishchuk R, Capitanio D, Braghetta P, Bernardi P, Bonaldo P, Gelfi C (2013) Changes in muscle cell metabolism and mechanotransduction are associated with myopathic phenotype in a mouse model of collagen VI deficiency. PloS One 8(2):e56716. doi: 10.1371/journal.pone.0056716 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P (2011) Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy 7(12):1415–1423PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16(11):1313–1320. doi: 10.1038/nm.2247 PubMedCrossRefGoogle Scholar
  70. 70.
    Meng J, Adkin CF, Arechavala-Gomeza V, Boldrin L, Muntoni F, Morgan JE (2010) The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscul Disord 20(1):6–15. doi: 10.1016/j.nmd.2009.11.007 PubMedCrossRefGoogle Scholar
  71. 71.
    Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12(3):257–266. doi: 10.1038/ncb2025 ncb2025 [pii]PubMedGoogle Scholar
  72. 72.
    Pannerec A, Formicola L, Besson V, Marazzi G, Sassoon DA (2013) Defining skeletal muscle resident progenitors and their cell fate potentials. Development 140(14):2879–2891. doi: 10.1242/dev.089326 PubMedCrossRefGoogle Scholar
  73. 73.
    Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, Schrier D, Falb D, Kirkland JL, Wagers AJ, Tseng YH (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 108(1):143–148. doi: 10.1073/pnas.1010929108 PubMedCrossRefGoogle Scholar
  74. 74.
    Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159(1):123–134PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mitchell PO, Mills T, O'Connor RS, Kline ER, Graubert T, Dzierzak E, Pavlath GK (2005) Sca-1 negatively regulates proliferation and differentiation of muscle cells. Dev Biol 283(1):240–252. doi: 10.1016/j.ydbio.2005.04.016 PubMedCrossRefGoogle Scholar
  76. 76.
    Nicole S, Desforges B, Millet G, Lesbordes J, Cifuentes-Diaz C, Vertes D, Cao ML, De Backer F, Languille L, Roblot N, Joshi V, Gillis JM, Melki J (2003) Intact satellite cells lead to remarkable protection against Smn gene defect in differentiated skeletal muscle. J Cell Biol 161(3):571–582. doi: 10.1083/jcb.200210117 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157(5):851–864. doi: 10.1083/jcb.200108150 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119(4):543–554. doi: 10.1016/j.cell.2004.10.021 PubMedCrossRefGoogle Scholar
  79. 79.
    Bauer N, Fonseca AV, Florek M, Freund D, Jaszai J, Bornhauser M, Fargeas CA, Corbeil D (2008) New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 188(1–2):127–138. doi: 10.1159/000112847 PubMedCrossRefGoogle Scholar
  80. 80.
    Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D'Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195. doi: 10.1172/JCI20325 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22(5):1008–1017. doi: 10.1038/mt.2014.26 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, Torrente Y, Butler-Browne GS, Mouly V (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17(10):1771–1778. doi: 10.1038/mt.2009.167 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Benchaouir R, Meregalli M, Farini A, D'Antona G, Belicchi M, Goyenvalle A, Battistelli M, Bresolin N, Bottinelli R, Garcia L, Torrente Y (2007) Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 1(6):646–657. doi: 10.1016/j.stem.2007.09.016 PubMedCrossRefGoogle Scholar
  84. 84.
    Torrente Y, Belicchi M, Marchesi C, D'Antona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D'Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N (2007) Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 16(6):563–577PubMedCrossRefGoogle Scholar
  85. 85.
    Snippert HJ, van Es JH, van den Born M, Begthel H, Stange DE, Barker N, Clevers H (2009) Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 136(7):2187–2194 . doi: 10.1053/j.gastro.2009.03.002e2181PubMedCrossRefGoogle Scholar
  86. 86.
    Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Tsuchida K, Yamamoto H, Fukada S (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124(Pt 21):3654–3664. doi: 10.1242/jcs.086629 PubMedCrossRefGoogle Scholar
  87. 87.
    Gregori G, Patsekin V, Rajwa B, Jones J, Ragheb K, Holdman C, Robinson JP (2012) Hyperspectral cytometry at the single-cell level using a 32-channel photodetector. Cytometry A 81(1):35–44. doi: 10.1002/cyto.a.21120 PubMedCrossRefGoogle Scholar
  88. 88.
    Gregori G, Rajwa B, Patsekin V, Jones J, Furuki M, Yamamoto M, Paul Robinson J (2014) Hyperspectral cytometry. Curr Top Microbiol Immunol 377:191–210. doi: 10.1007/82_2013_359 PubMedGoogle Scholar
  89. 89.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822. doi: 10.1021/ac901049w PubMedCrossRefGoogle Scholar
  90. 90.
    Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe'er D, Tanner SD, Nolan GP (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696. doi: 10.1126/science.1198704 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Biressi S, Miyabara EH, Gopinath SD, Carlig PM, Rando TA (2014) A Wnt-TGFbeta2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Sci Transl Med 6(267):267ra176. doi: 10.1126/scitranslmed.3008411 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, Garland C, Sbitany H, Hansen S, Seth R, Knott PD, Hoffman WY, Pomerantz JH (2015) Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Reports 5(3):419–434. doi: 10.1016/j.stemcr.2015.07.016 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Loperfido M, Steele-Stallard HB, Tedesco FS, VandenDriessche T (2015) Pluripotent stem cells for gene therapy of degenerative muscle diseases. Curr Gene Ther 15(4):364–380PubMedCrossRefGoogle Scholar
  94. 94.
    Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151(6):1221–1234PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067. doi: 10.1126/science.1114758 1114758 [pii]PubMedCrossRefGoogle Scholar
  96. 96.
    Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459. doi: 10.1634/stemcells.2007-0019 PubMedCrossRefGoogle Scholar
  97. 97.
    Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482(7386):524–528. doi: 10.1038/nature10834 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Boldrin F, Casonato S, Dainese E, Sala C, Dhar N, Palu G, Riccardi G, Cole ST, Manganelli R (2010) Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 38(12):e134. doi: 10.1093/nar/gkq235 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Penton CM, Thomas-Ahner JM, Johnson EK, McAllister C, Montanaro F (2013) Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate. PloS One 8(1):e54553. doi: 10.1371/journal.pone.0054553 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tanaka KK, Hall JK, Troy AA, Cornelison DD, Majka SM, Olwin BB (2009) Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration. Cell Stem Cell 4(3):217–225. doi: 10.1016/j.stem.2009.01.016 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Uezumi A, Ojima K, Fukada S, Ikemoto M, Masuda S, Miyagoe-Suzuki Y, Takeda S (2006) Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun 341(3):864–873. doi: 10.1016/j.bbrc.2006.01.037 PubMedCrossRefGoogle Scholar
  102. 102.
    Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157(4):571–577. doi: 10.1083/jcb.200112106 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Honda H, Kimura H, Rostami A (1990) Demonstration and phenotypic characterization of resident macrophages in rat skeletal muscle. Immunology 70(2):272–277PubMedPubMedCentralGoogle Scholar
  104. 104.
    McLennan IS (1993) Resident macrophages (ED2- and ED3-positive) do not phagocytose degenerating rat skeletal muscle fibres. Cell Tissue Res 272(1):193–196PubMedCrossRefGoogle Scholar
  105. 105.
    Pimorady-Esfahani A, Grounds M, McMenamin PG (1997) Macrophages and dendritic cells in normal and regenerating murine skeletal muscle. Muscle Nerve 20:158–166PubMedCrossRefGoogle Scholar
  106. 106.
    Brigitte M, Schilte C, Plonquet A, Baba-Amer Y, Henri A, Charlier C, Tajbakhsh S, Albert M, Gherardi RK, Chretien F (2010) Muscle resident macrophages control the immune cell reaction in a mouse model of notexin-induced myoinjury. Arthritis Rheum 62(1):268–279. doi: 10.1002/art.27183 PubMedCrossRefGoogle Scholar
  107. 107.
    Chazaud B (2016) Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol 94(2):140–145. doi: 10.1038/icb.2015.97 PubMedCrossRefGoogle Scholar
  108. 108.
    Kharraz Y, Guerra J, Mann CJ, Serrano AL, Munoz-Canoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 2013:491497. doi: 10.1155/2013/491497 CrossRefGoogle Scholar
  109. 109.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967PubMedCrossRefGoogle Scholar
  110. 110.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228PubMedCrossRefGoogle Scholar
  111. 111.
    Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96. doi: 10.1038/35040568 PubMedCrossRefGoogle Scholar
  112. 112.
    Kardon G, Harfe BD, Tabin CJ (2003) A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning. Dev Cell 5(6):937–944 S1534580703003605 [pii]PubMedCrossRefGoogle Scholar
  113. 113.
    Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, Hansen MS, Angus-Hill M, Kardon G (2011) Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138(2):371–384. doi: 10.1242/dev.057463 138/2/371 [pii]PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Cell and Developmental BiologyUniversity College LondonLondonUK
  2. 2.Cell Biology Group, Department of Experimental and Health Sciences (DCEXS)Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED)BarcelonaSpain

Personalised recommendations