Skip to main content

Isolation and In Vitro Characterization of Epidermal Stem Cells

  • Protocol
  • First Online:
Adult Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1553))

Abstract

Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized by a substantial cellular heterogeneity. Analysis of bulk populations of cells by colony-forming assays can consequently be convoluted by a number of factors that are not controlled for in population wide studies. It is therefore advantageous to refine in vitro growth assays by sub-fractionation of cells using flow cytometry. Using markers that define the spatial origin of epidermal cells, it is possible to interrogate the specific characteristics of subpopulations of cells based on their in vivo credentials. Here, we describe how to isolate, culture, and characterize keratinocytes from murine back and tail skin sorted by surface antigens associated with adult stem cell characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148:33–45

    Article  CAS  PubMed  Google Scholar 

  2. Zhu AJ, Watt FM (1996) Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes. J Cell Sci 109(Pt 13):3013–3023

    CAS  PubMed  Google Scholar 

  3. Van Keymeulen A, Rocha AS, Ousset M et al (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479(7372):189–193

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schepeler T, Page ME, Jensen KB (2014) Heterogeneity and plasticity of epidermal stem cells. Development 141:2559–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dimmeler S, Ding S, Rando TA et al (2014) Translational strategies and challenges in regenerative medicine. Nat Med 20:814–821

    Article  CAS  PubMed  Google Scholar 

  7. Puck TT, Marcus PI, Cieciura SJ (1956) Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med 103:273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morris RJ, Potten CS (1994) Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif 27:279–289

    Article  CAS  PubMed  Google Scholar 

  9. Watt FM, Jensen KB (2009) Epidermal stem cell diversity and quiescence. EMBO Mol Med 1:260–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Page ME, Lombard P, Ng F et al (2013) The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell 13:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    Article  CAS  PubMed  Google Scholar 

  12. Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A 84:2302–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724

    Article  CAS  PubMed  Google Scholar 

  14. Mackenzie IC, Mackenzie SL, Rittman GA (1989) Isolation of subpopulations of murine epidermal cells using monoclonal antibodies against differentiation-related cell surface molecules. Differentiation 41:127–138

    Article  CAS  PubMed  Google Scholar 

  15. Jensen KB, Driskell RR, Watt FM (2010) Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat Protoc 5:898–911

    Article  CAS  PubMed  Google Scholar 

  16. Jensen UB, Yan X, Triel C et al (2008) A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J Cell Sci 121:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jensen KB, Collins CA, Nascimento E et al (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4:427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nijhof JGW (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133:3027–3037

    Article  CAS  PubMed  Google Scholar 

  19. Horsley V, O’Carroll D, Tooze R et al (2006) Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126:597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brownell I, Guevara E, Bai CB et al (2011) Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8:552–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snippert HJ, Haegebarth A, Kasper M et al (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–1389

    Article  CAS  PubMed  Google Scholar 

  22. Trempus CS, Morris RJ, Bortner CD et al (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120:501–511

    CAS  PubMed  Google Scholar 

  23. Blanpain C, Lowry WE, Geoghegan A et al (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  CAS  PubMed  Google Scholar 

  24. Braun KM, Niemann C, Jensen UB et al (2003) Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130:5241–5255

    Article  CAS  PubMed  Google Scholar 

  25. Gomez C, Chua W, Miremadi A et al (2013) The interfollicular epidermis of adult mouse tail comprises two distinct cell lineages that are differentially regulated by Wnt, Edaradd, and Lrig1. Stem Cell Reports 1:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaks V, Barker N, Kasper M et al (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40:1291–1299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by The Danish Cancer Society, The Lundbeck Foundation, The Novo Nordic Foundation, Leo Pharma Foundation, and The A.P. Møller Foundation for the Advancement of Medical Science. K.B.J. is an EMBO young investigator. We thank past and present members of the Jensen lab for input, ideas, and contributions to the optimized protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim B. Jensen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Moestrup, K.S., Andersen, M.S., Jensen, K.B. (2017). Isolation and In Vitro Characterization of Epidermal Stem Cells. In: Di Nardo, P., Dhingra, S., Singla, D. (eds) Adult Stem Cells. Methods in Molecular Biology, vol 1553. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6756-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6756-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6754-4

  • Online ISBN: 978-1-4939-6756-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics