Skip to main content

Application of Hidden Markov Models in Biomolecular Simulations

  • Protocol
  • First Online:
Hidden Markov Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1552))

Abstract

Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  PubMed  Google Scholar 

  2. Shukla D, Meng Y, Roux B, Pande VS (2014) Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 5:1–11

    Article  CAS  Google Scholar 

  3. Lapidus LJ, Acharya S, Schwantes CR, Wu L, Shukla D, King M, DeCamp SJ, Pande VS (2014) Complex pathways in folding of protein G explored by simulation and experiment. Biophys J 107:947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shukla D, Trout BL (2010) Interaction of arginine with proteins and the mechanism by which it inhibits aggregation. J Phys Chem B 114:13426–13438

    Article  CAS  PubMed  Google Scholar 

  5. Shukla D, Shinde C, Trout BL (2009) Molecular computations of preferential interaction coefficients of proteins. J Phys Chem B 113:12546–12554

    Article  CAS  PubMed  Google Scholar 

  6. Shukla D, Schneider CP, Trout BL (2011) Molecular level insight into intra-solvent interaction effects on protein stability and aggregation. Adv Drug Deliv Rev 63:1074–1085

    Article  CAS  PubMed  Google Scholar 

  7. Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133:9181–9183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lawrenz M, Shukla D, Pande VS (2015) Cloud computing approaches for prediction of ligand binding poses and pathways. Sci Rep 5:1–5

    Article  Google Scholar 

  9. Kohlhoff KJ, Shukla D, Lawrenz M, Bowman GR, Konerding DE, Belov D, Altman RB, Pande VS (2014) Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat Chem 6:15–21

    Article  CAS  PubMed  Google Scholar 

  10. Lane TJ, Shukla D, Beauchamp KA, Pande VS (2013) To milliseconds and beyond: challenges in the simulation of protein folding. Curr Opin Struct Biol 23:58–65

    Article  CAS  PubMed  Google Scholar 

  11. Shukla D, Hernández CX, Weber JK, Pande VS (2015) Markov state models provide insights into dynamic modulation of protein function. Acc Chem Res 48:414–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sultan MM, Kiss G, Shukla D, Pande VS (2014) Automatic selection of order parameters in the analysis of large scale molecular dynamics simulations. J Chem Theory Comput 10:5217–5223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pande VS, Beauchamp KA, Bowman GR (2010) Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rabiner LR, Juang BH (1986) An introduction to hidden Markov models. IEEE ASSP Mag 3:4–16

    Article  Google Scholar 

  15. Eddy SR (1996) Hidden Markov models. Curr Opin Struct Biol 6:361–365

    Article  CAS  PubMed  Google Scholar 

  16. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  17. de Trazegnies C, Urdiales C, Bandera A, Sandoval F (2003) A Hidden Markov Model object recognition technique for incomplete and distorted corner sequences. Image Vis Comput 21:879–889

    Article  Google Scholar 

  18. Fox M, Ghallab M, Infantes G, Long D (2006) Robot introspection through learned hidden Markov models. Artif Intell 170:59–113

    Article  Google Scholar 

  19. Hughey R, Krogh A (1996) Hidden Markov models for sequence analysis: extension and analysis of the basic method. Bioinformatics 12:95–107

    Article  CAS  Google Scholar 

  20. Bouchaffra D, Tan J (2006) Protein fold recognition using a structural hidden Markov model. In: Proceedings of the 18th international conference on pattern recognition, vol 3, pp 186–189

    Google Scholar 

  21. Chiang TH, Hsu D, Latombe JC (2010) Markov dynamic models for long-timescale protein motion. Bioinformatics 26:269–277

    Article  Google Scholar 

  22. Thayer KM, Beveridge DL, Thayer KM, Beveridget DL (2011) Markov Hidden on simulations models DNA from molecular dynamics. Proc Natl Acad Sci U S A 99:8642–8647

    Article  Google Scholar 

  23. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Bowman GR, Huang X, Pande VS (2009) Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49:197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haque IS, Beauchamp KA, Pande VS (2014) A fast 3 × N matrix multiply routine for calculation of protein RMSD. bioRxiv 008631:1–13

    Google Scholar 

  26. Beauchamp KA, Bowman GR, Lane TJ, Maibaum L, Haque IS, Pande VS (2011) MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale. J Chem Theory Comput 7:3412–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noé F, Wu H, Prinz JH, Plattner N (2013) Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules. J Chem Phys 139:1–17

    Article  Google Scholar 

  28. Mcgibbon RT, Ramsundar B, Sultan MM, Kiss G, Pande VS (2014) Understanding protein dynamics with L1-regularized reversible hidden Markov models. In: Proceedings of the 31st international conference on machine learning, vol 32, pp 1197–1205

    Google Scholar 

  29. Ghahramani Z (2001) An introduction to hidden Markov models and Bayesian networks. Int J Pattern Recognit Artif Intell 15:9–42

    Article  Google Scholar 

  30. Talaga D (2007) Markov processes in single molecule fluorescence. Curr Opin Colloid Interface Sci 12:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  32. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  33. Zhang Y, Zhou L, Rouge L, Phillips AH, Lam C, Liu P, Sandoval W, Helgason E, Murray JM, Wertz IE (2013) Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7. Nat Chem Biol 9:51–58

    Article  CAS  PubMed  Google Scholar 

  34. Perez F, Granger BE (2007) IPython: a system for interactive scientific computing. Comput Sci Eng 9:21–29

    Article  CAS  Google Scholar 

  35. Akaike H, Company NP (1981) Likelihood of a model and information criteria. J Econom 16:3–14

    Article  Google Scholar 

  36. Schwarz G (1978) Estimating the dimension of a model. Ann Math Stat 6:461–464

    Article  Google Scholar 

  37. Keller BG, Kobitski AY, Jaeschke A, Nienhaus GU, Noe F (2014) Complex RNA folding kinetics revealed by single molecule FRET and hidden Markov models. J Am Chem Soc 136:4534–4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwakar Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Shukla, S., Shamsi, Z., Moffett, A.S., Selvam, B., Shukla, D. (2017). Application of Hidden Markov Models in Biomolecular Simulations. In: Westhead, D., Vijayabaskar, M. (eds) Hidden Markov Models. Methods in Molecular Biology, vol 1552. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6753-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6753-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6751-3

  • Online ISBN: 978-1-4939-6753-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics