Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

MicroRNAs (miRNA) are small non-coding RNAs that negatively regulate post-transcriptional gene expression. Almost all human cancers are characterized by abnormal microRNA expression patterns, which are unique to tumor types. A large body of experimental evidence documents the role of miRNAs in cancer pathogenesis, and specific miRNAs function as oncogenes or tumor suppressors. Due to unique expression profiles and anti/pro-tumorigenic properties of miRNAs, efforts are underway to explore their therapeutic and diagnostic potential. Many miRNA profiling methods have been developed, ranging from Northern blotting and qRT-PCR to the more recent microarray and RNA-Seq platforms. The following chapter details an imaging technique for cellular-specific miRNA expression profiling called in situ hybridization (ISH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  2. Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  3. Lagos-Quintana M et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  4. Lau NC et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862

    Article  CAS  PubMed  Google Scholar 

  5. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864

    Article  CAS  PubMed  Google Scholar 

  6. Londin E et al (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci U S A 112(10):E1106–E1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12(12):846–860

    Article  CAS  PubMed  Google Scholar 

  8. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  10. Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee Y et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589):2056–2060

    Article  CAS  PubMed  Google Scholar 

  13. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X (2014) Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30(10):1377–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Concepcion CP, Bonetti C, Ventura A (2012) The microRNA-17-92 family of microRNA clusters in development and disease. Cancer J 18(3):262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim LP et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    Article  CAS  PubMed  Google Scholar 

  17. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  18. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  19. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez A et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tijsen AJ, Pinto YM, Creemers EE (2012) Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 303(9):H1085–H1095

    Article  CAS  PubMed  Google Scholar 

  22. Karolina DS et al (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6(8), e22839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munker R, Calin GA (2011) MicroRNA profiling in cancer. Clin Sci 121(4):141–158

    Article  CAS  PubMed  Google Scholar 

  24. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  26. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang BG et al (2012) microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep 27(4):1019–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Donnell KA et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843

    Article  PubMed  Google Scholar 

  29. Chang TC et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50

    Article  CAS  PubMed  Google Scholar 

  30. He L et al (2007) microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 7(11):819–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kota J et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137(6):1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Orellana EA, Kasinski AL (2015) MicroRNAs in cancer: a historical perspective on the path from discovery to therapy. Cancers 7(3):1388–1405

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mirna T (2013) Mirna therapuetics is first to advance microRNA into the clinic for cancer. www.mirnarx.com. Accessed 13 May 2013

  34. Daige CL et al (2014) Systemic delivery of a miR-34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 13(10):2352–2360

    Article  CAS  PubMed  Google Scholar 

  35. Kasinski AL et al (2014) A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene 34(27):3547–3555

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xue W et al (2014) Small RNA combination therapy for lung cancer. Proc Natl Acad Sci U S A 111(34):E3553–E3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cortez MA et al (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boeri M et al (2011) MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A 108(9):3713–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allegra A et al (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 41(6):1897–1912

    CAS  PubMed  Google Scholar 

  41. Calin GA et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iram S (2014) Northern hybridization: a proficient method for detection of small RNAs and microRNAs. Methods Mol Biol 1099:179–188

    Article  PubMed  Google Scholar 

  43. Babak T et al (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10(11):1813–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nelson PT et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161

    Article  CAS  PubMed  Google Scholar 

  45. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Landgraf P et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu G et al (2012) Identification of miRNA signatures during the differentiation of hESCs into retinal pigment epithelial cells. PLoS One 7(7), e37224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marte B (2013) Tumour heterogeneity. Nature 501(7467):327

    Article  CAS  PubMed  Google Scholar 

  50. Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501(7467):346–354

    Article  CAS  PubMed  Google Scholar 

  51. Kwon JJ et al (2015) Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep 5:11450

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sempere LF et al (2010) Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res 16(16):4246–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burgess A et al (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 107(28):12564–12569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janaiah Kota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yarlagadda, S., Thota, A., Bansal, R., Kwon, J., Korc, M., Kota, J. (2017). Methods for MicroRNA Profiling in Cancer. In: Stefanska, B., MacEwan, D. (eds) Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6743-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6743-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6741-4

  • Online ISBN: 978-1-4939-6743-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics