Skip to main content

Synthesis and Application of Cell-Permeable Metabolites for Modulating Chromatin Modifications Regulated by α-Ketoglutarate-Dependent Enzymes

  • Protocol
  • First Online:
Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1012 Accesses

Abstract

Direct links between altered metabolism, dysregulation of epigenetic processes, and cancer have been established via investigation of cancer- and syndrome-associated mutations in genes encoding key enzymes of intermediary metabolism. Here, we provide an outline for the synthesis of cell-permeable forms of the cellular metabolites (R)-2-hydroxyglutarate and (L)-2-hydroxyglutarate, and their application for the inhibition of α-ketoglutarate-dependent Jumonji histone demethylases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeschke J, Collignon E, Fuks F (2016) Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr Opin Genet Dev 36:16–26. doi:10.1016/j.gde.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  2. Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139:1895–1902. doi:10.1242/dev.070771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ko M, An J, Rao A (2015) DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr Opin Cell Biol 37:91–101. doi:10.1016/j.ceb.2015.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caren H, Pollard SM, Beck S (2013) The good, the bad and the ugly: epigenetic mechanisms in glioblastoma. Mol Asp Med 34:849–862. doi:10.1016/j.mam.2012.06.007

    Article  CAS  Google Scholar 

  5. Rose NR, Woon EC, Tumber A et al (2012) Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. J Med Chem 55:6639–6643. doi:10.1021/jm300677j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chowdhury R, Yeoh KK, Tian YM et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469. doi:10.1038/embor.2011.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478. doi:10.1038/nature10860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30. doi:10.1016/j.ccr.2010.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Jurkowska R, Soeroes S et al (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38:4246–4253. doi:10.1093/nar/gkq147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li BZ, Huang Z, Cui QY et al (2011) Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 21:1172–1181. doi:10.1038/cr.2011.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo X, Wang L, Li J et al (2015) Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517:640–644. doi:10.1038/nature13899

    Article  CAS  PubMed  Google Scholar 

  12. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950. doi:10.1158/0008-5472.CAN-06-3123

    Article  CAS  PubMed  Google Scholar 

  13. Hashimoto H, Liu Y, Upadhyay AK et al (2012) Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 40:4841–4849. doi:10.1093/nar/gks155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He YF, Li BZ, Li Z et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307. doi:10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ito S, Shen L, Dai Q et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303. doi:10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338. doi:10.1074/jbc.C111.284620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Lu X, Lu J et al (2012) Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 8:328–330. doi:10.1038/nchembio.914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo JU, Su Y, Zhong C et al (2011) Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145:423–434. doi:10.1016/j.cell.2011.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindahl G, Lindstedt G, Lindstedt S (1967) Metabolism of 2-amino-5-hydroxyadipic acid in the rat. Arch Biochem Biophys 119:347–352

    Article  CAS  PubMed  Google Scholar 

  20. Chalmers RA, Lawson AM, Watts RW et al (1980) D-2-hydroxyglutaric aciduria: case report and biochemical studies. J Inherit Metab Dis 3:11–15

    Article  CAS  PubMed  Google Scholar 

  21. Rzem R, Veiga-da-Cunha M, Noel G et al (2004) A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria. Proc Natl Acad Sci U S A 101:16849–16854. doi:10.1073/pnas.0404840101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Achouri Y, Noel G, Vertommen D et al (2004) Identification of a dehydrogenase acting on D-2-hydroxyglutarate. Biochem J 381(Pt 1):35–42. doi:10.1042/BJ20031933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Struys EA, Salomons GS, Achouri Y et al (2005) Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am J Hum Genet 76:358–360. doi:10.1086/427890

    Article  CAS  PubMed  Google Scholar 

  24. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744. doi:10.1038/nature08617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Losman JA, Kaelin WG Jr (2013) What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27:836–852. doi:10.1101/gad.217406.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gross S, Cairns RA, Minden MD et al (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344. doi:10.1084/jem.20092506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234. doi:10.1016/j.ccr.2010.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borger DR, Tanabe KK, Fan KC et al (2012) Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17:72–79. doi:10.1634/theoncologist.2011-0386

    Article  CAS  PubMed  Google Scholar 

  29. Cairns RA, Iqbal J, Lemonnier F et al (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119:1901–1903. doi:10.1182/blood-2011-11-391748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773. doi:10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066. doi:10.1056/NEJMoa0903840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812. doi:10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin G, Reitman ZJ, Duncan CG et al (2013) Disruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas. Cancer Res 73:496–501. doi:10.1158/0008-5472.CAN-12-2852

    Article  CAS  PubMed  Google Scholar 

  34. Rendina AR, Pietrak B, Smallwood A et al (2013) Mutant IDH1 enhances the production of 2-hydroxyglutarate due to its kinetic mechanism. Biochemistry 52:4563–4577. doi:10.1021/bi400514k

    Article  CAS  PubMed  Google Scholar 

  35. Ward PS, Lu C, Cross JR et al (2013) The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem 288:3804–3815. doi:10.1074/jbc.M112.435495

    Article  CAS  PubMed  Google Scholar 

  36. Losman JA, Looper RE, Koivunen P et al (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625. doi:10.1126/science.1231677

    Article  CAS  PubMed  Google Scholar 

  37. Shim EH, Livi CB, Rakheja D et al (2014) L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 4:1290–1298. doi:10.1158/2159-8290.CD-13-0696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rzem R, Vincent MF, Van Schaftingen E et al (2007) L-2-hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis 30:681–689. doi:10.1007/s10545-007-0487-0

    Article  CAS  PubMed  Google Scholar 

  39. Schatz L, Segal HL (1969) Reduction of alpha-ketoglutarate by homogeneous lactic dehydrogenase X of testicular tissue. J Biol Chem 244:4393–4397

    CAS  PubMed  Google Scholar 

  40. Oldham WM, Clish CB, Yang Y et al (2015) Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22:291–303. doi:10.1016/j.cmet.2015.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Intlekofer AM, Dematteo RG, Venneti S et al (2015) Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22:304–311. doi:10.1016/j.cmet.2015.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koivunen P, Lee S, Duncan CG et al (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:484–488. doi:10.1038/nature10898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rzem R, Van Schaftingen E, Veiga-da-Cunha M (2006) The gene mutated in l-2-hydroxyglutaric aciduria encodes l-2-hydroxyglutarate dehydrogenase. Biochimie 88:113–116. doi:10.1016/j.biochi.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  44. Shim EH, Sudarshan S (2015) Another small molecule in the oncometabolite mix: L-2-Hydroxyglutarate in kidney cancer. Oncoscience 2:483–486

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hirata M, Sasaki M, Cairns RA et al (2015) Mutant IDH is sufficient to initiate enchondromatosis in mice. Proc Natl Acad Sci U S A 112:2829–2834. doi:10.1073/pnas.1424400112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Reitman ZJ, Duncan CG, Poteet E et al (2014) Cancer-associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and d-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia. J Biol Chem 289:23318–23328. doi:10.1074/jbc.M114.575183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saha SK, Parachoniak CA, Ghanta KS et al (2014) Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer. Nature 513:110–114. doi:10.1038/nature13441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang J, Chin R, Diep S et al. (2015) Compositions and methods for treating aging and age-related diseases and symptoms. U.S. Patent PCT/US2015/015304

    Google Scholar 

  49. Pusch S, Schweizer L, Beck AC et al (2014) D-2-Hydroxyglutarate producing neo-enzymatic activity inversely correlates with frequency of the type of isocitrate dehydrogenase 1 mutations found in glioma. Acta Neuropathol Commun 2:19. doi:10.1186/2051-5960-2-19

    Article  PubMed  PubMed Central  Google Scholar 

  50. Balduf H, Kirchmaier AL (Unpublished)

    Google Scholar 

  51. Hnasko TS, Hnasko RM (2015) The western blot. Methods Mol Biol 1318:87–96. doi:10.1007/978-1-4939-2742-5_9

    Article  PubMed  Google Scholar 

  52. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  PubMed  Google Scholar 

  53. Burnette WN (2009) Western blotting: remembrance of past things. Methods Mol Biol 536:5–8. doi:10.1007/978-1-59745-542-8_2

  54. Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4:429–434. doi:10.4103/1947-2714.100998

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shechter D, Dormann HL, Allis CD et al (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457. doi:10.1038/nprot.2007.202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the W.M. Keck Foundation (A.L.K.), Purdue University Center for Cancer Research (http://www.cancerresearch.purdue.edu) Innovative Pilot and Shared Resource Grants (A.L.K.), and a Bird Stair Fellowship (H.B.). This research was also supported by the National Cancer Institute (http://www.cancer.gov) [CCSG CA23168] for data acquired in the Purdue Computational and Medicinal Chemistry Resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann L. Kirchmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Balduf, H.T., Pepe, A., Kirchmaier, A.L. (2017). Synthesis and Application of Cell-Permeable Metabolites for Modulating Chromatin Modifications Regulated by α-Ketoglutarate-Dependent Enzymes. In: Stefanska, B., MacEwan, D. (eds) Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6743-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6743-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6741-4

  • Online ISBN: 978-1-4939-6743-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics