Advertisement

Proteotypic Peptides and Their Applications

  • Shivakumar Keerthikumar
  • Suresh Mathivanan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1549)

Abstract

Recent advances in mass spectrometry based proteomic techniques and publicly available large proteomic repositories are being exploited to characterize the proteome of multiple organisms. While humongous amount of proteomic data is being acquired and analyzed, many biological questions still remain unanswered. Proteotypic peptides which uniquely represent target proteins or a protein isoform are used as an alternative strategy for protein identification in the field of immunological methods and targeted proteomic techniques. Using different computational approaches, resources and techniques used in the identification of proteotypic peptides of target proteins is discussed here.

Key words

Targeted proteomics Selected reaction monitoring Biomarkers Databases Bioinformatics 

References

  1. 1.
    Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29(7):625–634. doi: 10.1038/nbt.1900 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cohen Freue GV, Meredith A, Smith D, Bergman A, Sasaki M, Lam KK, Hollander Z, Opushneva N, Takhar M, Lin D, Wilson-McManus J, Balshaw R, Keown PA, Borchers CH, McManus B, Ng RT, McMaster WR, Biomarkers in T, the NCECPoOFCoET (2013) Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation. PLoS Comput Biol 9(4), e1002963. doi: 10.1371/journal.pcbi.1002963 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Huttenhain R, Malmstrom J, Picotti P, Aebersold R (2009) Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol 13(5-6):518–525. doi: 10.1016/j.cbpa.2009.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brewis IA, Brennan P (2010) Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol 80:1–44. doi: 10.1016/B978-0-12-381264-3.00001-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Percy AJ, Chambers AG, Yang J, Hardie DB, Borchers CH (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844(5):917–926. doi: 10.1016/j.bbapap.2013.06.008 CrossRefPubMedGoogle Scholar
  6. 6.
    Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222. doi: 10.1038/msb.2008.61 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566. doi: 10.1038/nmeth.2015 CrossRefPubMedGoogle Scholar
  8. 8.
    Dittrich J, Becker S, Hecht M, Ceglarek U (2015) Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. Proteomics Clin Appl 9(1-2):5–16. doi: 10.1002/prca.201400121 CrossRefPubMedGoogle Scholar
  9. 9.
    Vandemoortele G, Staes A, Gonnelli G, Samyn N, De Sutter D, Vandermarliere E, Timmerman E, Gevaert K, Martens L, Eyckerman S (2016) An extra dimension in protein tagging by quantifying universal proteotypic peptides using targeted proteomics. Sci Rep 6:27220. doi: 10.1038/srep27220 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9(5):429–434. doi: 10.1038/embor.2008.56 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics. doi: 10.1002/pmic.201500449 PubMedCentralGoogle Scholar
  12. 12.
    Song X, Amirkhani A, Wu JX, Pascovici D, Zaw T, Xavier D, Clarke SJ, Molloy MP (2016) Analytical performance of nanoLC-SRM using non-depleted human plasma over an 18-month period. Proteomics. doi: 10.1002/pmic.201500507 PubMedCentralGoogle Scholar
  13. 13.
    Liebler DC, Zimmerman LJ (2013) Targeted quantitation of proteins by mass spectrometry. Biochemistry 52(22):3797–3806. doi: 10.1021/bi400110b CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chambers AG, Percy AJ, Yang J, Borchers CH (2015) Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol Cell Proteomics 14(11):3094–3104. doi: 10.1074/mcp.O115.049957 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Craig R, Cortens JP, Beavis RC (2005) The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom 19(13):1844–1850. doi: 10.1002/rcm.1992 CrossRefPubMedGoogle Scholar
  16. 16.
    Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL (2015) Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl 9(7-8):745–754. doi: 10.1002/prca.201400164 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang CY, Moritz RL (2013) The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res 12(1):162–171. doi: 10.1021/pr301012j CrossRefPubMedGoogle Scholar
  18. 18.
    Vizcaino JA, Foster JM, Martens L (2010) Proteomics data repositories: providing a safe haven for your data and acting as a springboard for further research. J Proteomics 73(11):2136–2146. doi: 10.1016/j.jprot.2010.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797. doi: 10.1021/pr800538n CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Farrah T, Deutsch EW, Kreisberg R, Sun Z, Campbell DS, Mendoza L, Kusebauch U, Brusniak MY, Huttenhain R, Schiess R, Selevsek N, Aebersold R, Moritz RL (2012) PASSEL: the PeptideAtlas SRMexperiment library. Proteomics 12(8):1170–1175. doi: 10.1002/pmic.201100515 CrossRefPubMedGoogle Scholar
  21. 21.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi: 10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, Ranish J, Raught B, Schmitt R, Werner T, Kuster B, Aebersold R (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–131. doi: 10.1038/nbt1275 CrossRefPubMedGoogle Scholar
  23. 23.
    Webb-Robertson BJ, Cannon WR, Oehmen CS, Shah AR, Gurumoorthi V, Lipton MS, Waters KM (2010) A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. Bioinformatics 26(13):1677–1683CrossRefPubMedGoogle Scholar
  24. 24.
    Fusaro VA, Mani DR, Mesirov JP, Carr SA (2009) Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nat Biotechnol 27(2):190–198. doi: 10.1038/nbt.1524 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia

Personalised recommendations