Network Tools for the Analysis of Proteomic Data

  • David Chisanga
  • Shivakumar Keerthikumar
  • Suresh Mathivanan
  • Naveen Chilamkurti
Part of the Methods in Molecular Biology book series (MIMB, volume 1549)


Recent advancements in high-throughput technologies such as mass spectrometry have led to an increase in the rate at which data is generated and accumulated. As a result, standard statistical methods no longer suffice as a way of analyzing such gigantic amounts of data. Network analysis, the evaluation of how nodes relate to one another, has over the years become an integral tool for analyzing high throughput proteomic data as they provide a structure that helps reduce the complexity of the underlying data.

Computational tools, including pathway databases and network building tools, have therefore been developed to store, analyze, interpret, and learn from proteomics data. These tools enable the visualization of proteins as networks of signaling, regulatory, and biochemical interactions. In this chapter, we provide an overview of networks and network theory fundamentals for the analysis of proteomics data. We further provide an overview of interaction databases and network tools which are frequently used for analyzing proteomics data.

Key words

Proteomics Network theory Protein–protein interactions Network tools Network analysis Bioinformatics 


  1. 1.
    Mathivanan S (2014) Integrated bioinformatics analysis of the publicly available protein data shows evidence for 96% of the human proteome. J Proteomics Bioinformatics 2014(7):041–049. doi: 10.4172/jpb.1000301 Google Scholar
  2. 2.
    Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LDN, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang T-C, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TSK, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509(7502):575–581. doi: 10.1038/nature13302 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese J-H, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. doi: 10.1038/nature13319 CrossRefPubMedGoogle Scholar
  4. 4.
    Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG (2011) Using graph theory to analyze biological networks. BioData Mining 4(1):1–27. doi: 10.1186/1756-0381-4-10 CrossRefGoogle Scholar
  5. 5.
    Sevimoglu T, Arga KY (2014) The role of protein interaction networks in systems biomedicine. Comput Struct Biotechnol J 11(18):22–27. doi: 10.1016/j.csbj.2014.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gandhi TKB, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38(3):285–293, CrossRefPubMedGoogle Scholar
  7. 7.
    Mathivanan S, Periaswamy B, Gandhi T, Kandasamy K, Suresh S, Mohmood R, Ramachandra Y, Pandey A (2006) An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7(5):1–14. doi: 10.1186/1471-2105-7-s5-s19 Google Scholar
  8. 8.
    Pathan M, Keerthikumar S, Ang C-S, Gangoda L, Quek CYJ, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15(15):2597–2601. doi: 10.1002/pmic.201400515 CrossRefPubMedGoogle Scholar
  9. 9.
    Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez J-C, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Nat Biotechnol 14(1):61–65CrossRefGoogle Scholar
  10. 10.
    Schmidt A, Forne I, Imhof A (2014) Bioinformatic analysis of proteomics data. BMC Syst Biol 8(Suppl 2):S3. doi: 10.1186/1752-0509-8-S2-S3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Blais A, Dynlacht BD (2005) Constructing transcriptional regulatory networks. Genes Dev 19(13):1499–1511CrossRefPubMedGoogle Scholar
  12. 12.
    De Las RJ, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6), e1000807. doi: 10.1371/journal.pcbi.1000807 CrossRefGoogle Scholar
  13. 13.
    Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database—2009 update. Nucleic Acids Res 37(Database issue):D767–D772. doi: 10.1093/nar/gkn892 CrossRefPubMedGoogle Scholar
  14. 14.
    Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40(D1):D857–D861. doi: 10.1093/nar/gkr930 CrossRefPubMedGoogle Scholar
  15. 15.
    Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M (2015) The BioGRID interaction database: 2015 update. Nucleic Acids Res 43(Database issue):D470–D478. doi: 10.1093/nar/gku1204 CrossRefPubMedGoogle Scholar
  16. 16.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452. doi: 10.1093/nar/gku1003 CrossRefPubMedGoogle Scholar
  17. 17.
    Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(suppl 1):D449–D451. doi: 10.1093/nar/gkh086 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bader GD, Betel D, Hogue CW (2003) BIND: the biomolecular interaction network database. Nucleic Acids Res 31(1):248–250CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the molecular INTeraction database. Nucleic Acids Res 35(suppl 1):D572–D574. doi: 10.1093/nar/gkl950 CrossRefPubMedGoogle Scholar
  20. 20.
    Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H (2014) The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42(D1):D358–D363. doi: 10.1093/nar/gkt1115 CrossRefPubMedGoogle Scholar
  21. 21.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303CrossRefPubMedGoogle Scholar
  23. 23.
    Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5(2):101–113CrossRefPubMedGoogle Scholar
  24. 24.
    Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S-L, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183CrossRefPubMedGoogle Scholar
  25. 25.
    Ge H (2000) UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions. Nucleic Acids Res 28(2):e3CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1(1):302–307CrossRefPubMedGoogle Scholar
  27. 27.
    Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627CrossRefPubMedGoogle Scholar
  28. 28.
    Zahiri J, Bozorgmehr JH, Masoudi-Nejad A (2013) Computational prediction of protein–protein interaction networks: algorithms and resources. Curr Genomics 14(6):397–414. doi: 10.2174/1389202911314060004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pan A, Lahiri C, Rajendiran A, Shanmugham B (2015) Computational analysis of protein interaction networks for infectious diseases. Brief Bioinform. doi: 10.1093/bib/bbv059 Google Scholar
  30. 30.
    Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42CrossRefPubMedGoogle Scholar
  31. 31.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):47–52CrossRefGoogle Scholar
  32. 32.
    Berenstein AJ, Piñero J, Furlong LI, Chernomoretz A (2015) Mining the modular structure of protein interaction networks. PLoS One 10(4), e0122477. doi: 10.1371/journal.pone.0122477 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T (2012) A travel guide to Cytoscape plugins. Nat Methods 9(11):1069–1076. doi: 10.1038/nmeth.2212 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Han K, Park B, Kim H, Hong J, Park J (2004) HPID: The human protein interaction database. Bioinformatics 20(15):2466–2470. doi: 10.1093/bioinformatics/bth253 CrossRefPubMedGoogle Scholar
  35. 35.
    Chen JY, Mamidipalli S, Huan T (2009) HAPPI: an online database of comprehensive human annotated and predicted protein interactions. BMC Genomics 10(Suppl 1):S16CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pratt D, Chen J, Welker D, Rivas R, Pillich R, Rynkov V, Ono K, Miello C, Hicks L, Szalma S, Stojmirovic A, Dobrin R, Braxenthaler M, Kuentzer J, Demchak B, Ideker T (2015) NDEx, the network data exchange. Cell Syst 1(4):302–305. doi: 10.1016/j.cels.2015.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM, Biankin AV, Hautaniemi S, Wu J (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res 40(D1):D862–D865. doi: 10.1093/nar/gkr967 CrossRefPubMedGoogle Scholar
  38. 38.
    Chisanga D, Keerthikumar S, Pathan M, Ariyaratne D, Kalra H, Boukouris S, Mathew NA, Saffar HA, Gangoda L, Ang C-S, Sieber OM, Mariadason JM, Dasgupta R, Chilamkurti N, Mathivanan S (2016) Colorectal cancer atlas: an integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues. Nucleic Acids Res 44(D1):D969–D974. doi: 10.1093/nar/gkv1097 CrossRefPubMedGoogle Scholar
  39. 39.
    Breitkreutz B-J, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4(3):R22CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • David Chisanga
    • 1
  • Shivakumar Keerthikumar
    • 2
  • Suresh Mathivanan
    • 2
  • Naveen Chilamkurti
    • 1
  1. 1.Department of Computer Science and Information Technology, School of Engineering and Mathematical SciencesyLa Trobe UniversityMelbourneAustralia
  2. 2.Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneAustralia

Personalised recommendations