Skip to main content

Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

Biological membranes play an important role in determining the activity and selectivity of antimicrobial host defense peptides (AMPs). Several biophysical methods have been developed to study the interactions of AMPs with biological membranes. Isothermal titration calorimetry and differential scanning calorimetry (ITC and DSC, respectively) are powerful techniques as they provide a unique label-free approach. ITC allows for a complete thermodynamic characterization of the interactions between AMPs and membranes. DSC allows one to study the effects of peptide binding on the packing of the phospholipids in the membrane. Used in combination with mimetic models of biological membranes, such as phospholipid vesicles, the role of different phospholipid headgroups and distinct acyl chains can be characterized. In these protocols the use of ITC and DSC methods for the study of peptide–membrane interactions will be presented, highlighting the importance of membrane model systems selected to represent bacterial and mammalian cells. These studies provide valuable insights into the mechanisms involved in the membrane binding and perturbation properties of AMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  2. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  4. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  CAS  PubMed  Google Scholar 

  6. Nicolas P (2009) Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276:6483–6496

    Article  CAS  PubMed  Google Scholar 

  7. Matsuzaki K, Sugishita K, Fujii N et al (1995) Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34:3423–3429

    Article  CAS  PubMed  Google Scholar 

  8. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  CAS  PubMed  Google Scholar 

  9. Lohner K, Sevcsik E, Pabst G (2008) Liposome-based biomembrane mimetic systems: implications for lipid-peptide interactions. In: Advances in planar lipid bilayers and liposomes. Elsevier, Amsterdam, pp 103–132

    Google Scholar 

  10. Jing WG, Prenner EJ, Vogel HJ et al (2005) Headgroup structure and fatty acid chain length of the acidic phospholipids modulate the interaction of membrane mimetic vesicles with the antimicrobial peptide protegrin-1. J Pept Sci 11:735–743

    Article  CAS  PubMed  Google Scholar 

  11. Bozelli JC, Sasahara ET, Pinto MRS et al (2012) Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Chem Phys Lipids 165:365–373

    Article  CAS  PubMed  Google Scholar 

  12. McElhaney RN (1982) The use of differential scanning calorimetry and differential thermal analysis in studies of model nad biological membranes. Chem Phys Lipids 30:229–259

    Article  CAS  PubMed  Google Scholar 

  13. Lewis RNAH, Mannock DA, Mcelhaney RN (2007) Differential scanning calorimetry in the study of lipid phase. Practical considerations. Methods Mol Biol 400:171–195

    Article  CAS  PubMed  Google Scholar 

  14. Mavromoustakos TM (2007) The use of differential scanning calorimetry to study drug – membrane interactions. Methods Mol Biol 400:587–600

    Article  CAS  PubMed  Google Scholar 

  15. Cañadas O, Casals C (2013) Differential scanning calorimetry of protein-lipid interactions. In: Kleinschmidt JH (ed) Lipid-protein interaction: methods and protocols. Humana Press, New York, NY, pp 55–71

    Chapter  Google Scholar 

  16. Demetzos C (2008) Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res 18:159–173

    Article  CAS  PubMed  Google Scholar 

  17. Spink CH (2008) Differential scanning calorimetry. Methods Cell Biol 84:115–141

    Article  CAS  PubMed  Google Scholar 

  18. Lohner K, Prenner EJ (1999) Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim Biophys Acta 1462:141–156

    Article  CAS  PubMed  Google Scholar 

  19. Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riske KA, Barroso RP, Vequi-suplicy CC et al (2009) Lipid bilayer pre-transition as the beginning of the melting process. Biochim Biophys Acta 1788:954–963

    Article  CAS  PubMed  Google Scholar 

  21. Heimburg T (2000) A model for the lipid pretransition: coupling of ripple formation with the chain-melting transition. Biophys J 78:1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113

    Article  CAS  PubMed  Google Scholar 

  23. Duff Jr MR, Grubbs J, Howell EE (2011) Isothermal titration calorimetry for measuring macromolecule-ligand affinity. J Vis Exp (55): 2796

    Google Scholar 

  24. Lewis EA, Murphy KP (2005) Isothermal titration calorimetry. In: Nienhaus GU (ed) Protein-ligands interactions methods and applications. Humana Press, Totowa, NJ, pp 1–15

    Chapter  Google Scholar 

  25. Bagheri M (2013) Synthesis and thermodynamic characterization of small cyclic antimicrobial arginine and tryptophan-rich peptides with selectivity for Gram-negative bacteria. In: Giuliani A, Rinaldi AC (eds) Antimicrobial peptides methods and protocols. Humana Press, New York, NY, pp 87–109

    Google Scholar 

  26. Seelig J (2004) Thermodynamics of lipid – peptide interactions. Biochim Biophys Acta 1666:40–50

    Article  CAS  PubMed  Google Scholar 

  27. Wieprecht T, Seelig J (2002) Peptide-lipid interactions. Curr Top Membr 52:31–56

    Article  CAS  Google Scholar 

  28. Wenk MR, Seelig J (1998) Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. Biochemistry 37:3909–3916

    Article  CAS  PubMed  Google Scholar 

  29. Henriksen JR, Andresen TL (2011) Thermodynamic profiling of peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles. Biophys J 101:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klocek G, Schulthess T, Shai Y et al (2009) Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation. Biochemistry 48:2586–2596

    Article  CAS  PubMed  Google Scholar 

  31. Wieprecht T, Apostolov O, Beyermann M et al (1999) Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol 294:785–794

    Article  CAS  PubMed  Google Scholar 

  32. Artimo P, Jonnalagedda M, Arnold K et al (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arias M, Jensen KV, Nguyen LT et al (2014) Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions. Biochim Biophys Acta 1848:277–288

    Article  PubMed  Google Scholar 

  34. Ames BN, Neufeld EF, Ginsberg V (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  35. Jing W, Hunter HN, Hagel J et al (2003) The structure of the antimicrobial peptide micelles Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipid bilayers. J Pept Res 61:219–229

    Article  CAS  PubMed  Google Scholar 

  36. Fukada H, Takahashi K (1998) Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins Struct Funct Genet 33:159–166

    Article  CAS  PubMed  Google Scholar 

  37. Goldberg RN (2002) Thermodynamic quantities for the ionization reactions of buffers. J Phys Chem Ref Data 31:231

    Article  CAS  Google Scholar 

  38. Phillips GB, Dodge JT (1967) Composition of phospholipids and of phospholipid fatty acids in human red cells. J Lipid Res 8:667–675

    PubMed  Google Scholar 

  39. Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tellinghuisen J, Chodera JD (2011) Systematic errors in isothermal titration calorimetry: concentrations and baselines. Anal Biochem 414:297–299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Vogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Arias, M., Prenner, E.J., Vogel, H.J. (2017). Calorimetry Methods to Study Membrane Interactions and Perturbations Induced by Antimicrobial Host Defense Peptides. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics