Anti-inflammatory Properties of Antimicrobial Peptides and Peptidomimetics: LPS and LTA Neutralization

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1548)

Abstract

Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) neutralization constitute potential non-antibiotic treatment strategies for sepsis - a systemic infection-induced inflammatory response. Studies on LPS- and LTA-neutralizing compounds are abundant in literature, and a number of peptides and peptidomimetics appear to display promising activity. However, in this ongoing search for potential antisepsis drug leads, it will be preferable that the assays used by different research groups lead to readily comparable data for the most efficient compounds. Here, we propose and describe standardized methods to be used for testing of novel compounds for their LPS- and LTA-neutralizing capacity with a focus on functional suppression of pro-inflammatory responses in cell-based systems. To best mimic the human in vivo conditions, we suggest the use of freshly isolated human leukocytes combined with an appropriate method for the chosen cytokine (e.g., IL-6 or TNF-α). The described protocols comprise isolation, stimulation, and viability test of the human leukocytes.

Key words

LPS neutralization LTA neutralization Peptides Peptidomimetics Cytokines 

References

  1. 1.
    Wellington EMH, Boxell ABA, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 13:155–165CrossRefPubMedGoogle Scholar
  2. 2.
    Theuretzbacher U (2013) Global antibacterial resistance: the never-ending story. J Glob Antimicrob Resist 1:63–69CrossRefPubMedGoogle Scholar
  3. 3.
    Jabes D (2011) The antibiotic R&D pipeline: an update. Curr Opin Microbiol 14:564–569CrossRefPubMedGoogle Scholar
  4. 4.
    Uppu DS, Ghosh C, Haldar J (2015) Surviving sepsis in the era of antibiotic resistance: are there any alternative approaches to antibiotic therapy? Microb Pathog 80:7–13CrossRefPubMedGoogle Scholar
  5. 5.
    Wang G (2014) Human antimicrobial peptides and proteins. Pharmaceuticals 7:545–594CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jarczak J, Kosciuczuk EM, Lisowski P, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Bagnicka E (2013) Defensins: natural component of human innate immunity. Human Immunol 74:1069–1079CrossRefGoogle Scholar
  7. 7.
    Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock REW (2002) The human antimicrobial peptide LL37 is a multifunctional modulator of innate immune responses. J Immunol 169:3883–3891CrossRefPubMedGoogle Scholar
  8. 8.
    Hancock REW, Stahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557CrossRefPubMedGoogle Scholar
  9. 9.
    Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, Wang A, Lee K, Doria S, Hamill P, Yu JJ, Li Y, Domini O, Guarna MM, Finlay BB, North JR, Hancock REW (2007) An anti-infective peptide that selectively modulates innate immune responses. Nat Biotechnol 25:465–472CrossRefPubMedGoogle Scholar
  10. 10.
    Nijnik A, Madera L, Ma S, Waldbrook M, Elliot MR, Easton D, Mayer ML, Mullaly SC, Kindrachuk J, Jenssen H, Hancock REW (2010) Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol 184:2539–2550CrossRefPubMedGoogle Scholar
  11. 11.
    Yeung ATY, Gellatly SL, Hancock REW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68:2161–2176CrossRefPubMedGoogle Scholar
  12. 12.
    Hancock REW, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10:243–254CrossRefPubMedGoogle Scholar
  13. 13.
    Hilchie AL, Wuerth K, Hancock REW (2013) Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 9:761–768CrossRefPubMedGoogle Scholar
  14. 14.
    Cohen J (2009) Non-antibiotic strategies for sepsis. Clin Microbiol Infect 15:302–307CrossRefPubMedGoogle Scholar
  15. 15.
    Alejandria MM, Lansang MA, Dans LF, Mantaring JB (2013) Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev (9):CD001090Google Scholar
  16. 16.
    Leitman IM (2011) Modulating the inflammatory response in sepsis. J Surg Res 171:e183–e185CrossRefPubMedGoogle Scholar
  17. 17.
    van Langevelde P, Kwappenberg KM, Groeneveld PH, Mattie H, van Dissel JT (1998) Antibiotic-induced lipopolysaccharide (LPS) release from Salmonella typhi: delay between killing by ceftazidime and imipenem and release of LPS. Antimicrob Agents Chemother 42:739–743PubMedPubMedCentralGoogle Scholar
  18. 18.
    Heumann D, Roger T (2002) Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta 323:59–72CrossRefPubMedGoogle Scholar
  19. 19.
    Ginsburg I (2002) Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2:171–179CrossRefPubMedGoogle Scholar
  20. 20.
    Rockel C, Hartung T (2012) Systematic review of membrane components of Gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Front Pharmacol 3:56CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    de Tejada GM, Heinbockel L, Ferrer-Espada R, Heine H, Alexander C, Bárcena-Valera S, Goldmann T, Correa W, Wiesmüller K-H, Gisch N, Sánchez-Gómez S, Fukuoka S, Schürholz T, Gutsmann T, Brandenburg K (2015) Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides. Sci Rep 5:14292CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Remick DG (2007) Pathophysiology of sepsis. Am J Pathol 170:1435–1444CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE (2009) Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 69:479–491CrossRefPubMedGoogle Scholar
  24. 24.
    Kimbrell MR, Warshakoon H, Cromer JR, Malladi S, Hood JD, Balakrishna R, Scholdberg TA, David SA (2008) Comparison of the immunostimulatory and proinflammatory activities of candidate Gram-positive endotoxins, lipoteichoic acid, peptidoglycan, and lipopeptides, in murine and human cells. Immunol Lett 118:132–141CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rosenfeld J, Papo N, Shai Y (2006) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defence peptides. Peptide properties and plausible modes of action. J Biol Chem 281:1636–1643CrossRefPubMedGoogle Scholar
  26. 26.
    Pulido D, Nogués MV, Boix E, Torrent M (2012) Lipopolysaccharide neutralization by antimicrobial peptides: a gambit in the innate host defense strategy. J Innate Immun 4:327–336CrossRefPubMedGoogle Scholar
  27. 27.
    Sun Y, Shang D (2015) Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm 2015:167572CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wong K-F, Luk JM (2009) Endotoxin-neutralizing peptides as Gram-negative sepsis therapeutics. Protein Pept Lett 16:539–542CrossRefPubMedGoogle Scholar
  29. 29.
    Suzuki MM, Matsumoto M, Yamamoto A, Ochiai M, Horiuchi Y, Niwa M, Omi H, Kobayashi T, Takagi T (2010) Molecular design of LPS-binding peptides. J Microbiol Methods 83:153–155CrossRefPubMedGoogle Scholar
  30. 30.
    Schuerholz T, Brandenburg K, Marx G (2012) Antimicrobial peptides and their potential application in inflammation and sepsis. Crit Care 16:207CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shukla P, Rao GM, Pandey G, Sharma S, Mittapeeli N, Shegokar R, Mishra PR (2014) Therapeutic interventions in sepsis: current and anticipated pharmacological agents. Br J Pharmacol 171:5011–5031PubMedPubMedCentralGoogle Scholar
  32. 32.
    Shim D-W, Heo K-H, Kim Y-K, Sim E-J, Kang T-B, Choi J-W, Sim D-W, Cheong S-H, Lee S-H, Bang J-K, Won H-S, Lee K-H (2015) Anti-inflammatory action of an antimicrobial model peptide that suppresses the TRIF-dependent signaling pathway via inhibition of toll-like receptor 4 endocytosis in lipopolysaccharide-stimulated macrophages. PLoS One 10:e126871Google Scholar
  33. 33.
    Wei L, Yang J, He X, Mo G, Hong J, Yan X, Lin D, Lai R (2013) Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide. J Med Chem 56:3546–3556CrossRefPubMedGoogle Scholar
  34. 34.
    Nan YH, Lee B-J, Sin SY (2012) Prokaryotic selectivity, anti-endotoxic activity and protease stability of diastereomeric and enantiomeric analogs of human antimicrobial peptide LL-37. Bull Korean Chem Soc 33:2883–2889CrossRefGoogle Scholar
  35. 35.
    Saravanan R, Mohanram H, Joshi M, Domadia PN, Torres J, Ruedl C, Bhattacharjya S (2012) Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelles: mechanistic insights into outer-membrane permeabilization and endotoxin neutralization. Biochim Biophys Acta 1818:1613–1624CrossRefPubMedGoogle Scholar
  36. 36.
    Kaconis Y, Kowalski I, Howe J, Brauser A, Richter W, Razquin-Olazarán I, Inigo-Pestana M, Garidel P, Rössle M, de Tejada GM, Gutsman T, Brandenburg K (2011) Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides. Biophys J 100:2652–2661CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pini A, Falciani C, Mantengoli E, Bindi S, Brunetti J, Iozzi S, Rossolini GM, Bracci L (2010) A novel tetrabranched antimicrobial peptide that neutralizes bacterial lipopolysaccharide and prevents septic shock in vivo. FASEB J 24:1015–1022CrossRefPubMedGoogle Scholar
  38. 38.
    Mas-Moruno C, Cascales L, Cruz LJ, Mora P, Pérez-Payá E, Albericio F (2008) Nanostructure formation enhances the activity of LPS-neutralizing peptides. ChemMedChem 3:1748–1755CrossRefPubMedGoogle Scholar
  39. 39.
    Andrä J, Lohner K, Blondelle SE, Jerala R, Moriyon I, Koch MHJ, Garidel P, Brandenburg K (2005) Enhancement of endotoxin neutralization by coupling of a C12-alkyl chain to a lactoferricin-derived peptide. Biochem J 385:135–143CrossRefPubMedGoogle Scholar
  40. 40.
    Rosenfeld Y, Lev N, Shai Y (2010) Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry 49:853–861CrossRefPubMedGoogle Scholar
  41. 41.
    Skovbakke SL, Larsen CJ, Heegaard PMH, Moesby L, Franzyk H (2015) Lipidated α-peptide/β-peptoid hybrids with potent anti-inflammatory activity. J Med Chem 58:801–813CrossRefPubMedGoogle Scholar
  42. 42.
    Murugan R, Jacob B, Ahn M, Hwang E, Sohn H, Park H-N, Lee E, Seo J-H, Cheong C, Nam K-Y, Hyun J-K, Jeong K-W, Kim Y, Shin SY, Bang JK (2013) De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-inflammatory activities. PLoS One 8:e80025CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Padhee S, Smith C, Wu H, Li Y, Manoj N, Qiao Q, Khan Z, Cao C, Yin H, Cai J (2014) The development of antimicrobial α-AApeptides that suppress proinflammatory immune responses. ChemBioChem 15:688–694CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li Y, Smith C, Wu H, Padhee S, Manoj N, Cardiello J, Qiao Q, Cao C, Yin H, Cai J (2014) Lipidated cyclic γ-AApeptides display both antimicrobial and anti-inflammatory activity. ACS Chem Biol 9:211–217CrossRefPubMedGoogle Scholar
  45. 45.
    Cheng RP, Gellman SH, DeGrado WF (2001) β-peptides: from structure to function. Chem Rev 101:3219–3233CrossRefPubMedGoogle Scholar
  46. 46.
    Chongsiriwatana NP, Patch JA, Czyzewski AM, Dohm MT, Ivankin A, Gidalevitz D, Zuckermann RN, Barron AE (2008) Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proc Natl Acad Sci U S A 105:2794–2799CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schmitt MA, Weisblum B, Gellman SH (2007) Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of α/β-peptides. J Am Chem Soc 129:417–428CrossRefPubMedGoogle Scholar
  48. 48.
    Olsen CA, Ziegler HL, Nielsen HM, Frimodt-Møller N, Jaroszewski JW, Franzyk H (2010) Antimicrobial, hemolytic, and cytotoxic activities of selective antimicrobial β-peptoid-peptide hybrid oligomers. ChemBioChem 11:1356–1360CrossRefPubMedGoogle Scholar
  49. 49.
    Yang L, Knapp KM, Yang L, Molin S, Franzyk H, Folkesson A (2013) High in vitro antimicrobial activity of β-peptoid-peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis. Int J Antimicrob Agents 41:20–27CrossRefPubMedGoogle Scholar
  50. 50.
    Jahnsen R, Frimodt-Møller N, Franzyk H (2012) Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli: a comparative study of different backbones. J Med Chem 55:7253–7261CrossRefPubMedGoogle Scholar
  51. 51.
    Jahnsen RD, Haney EF, Franzyk H, Hancock REW (2013) Characterization of a proteolytically stable multifunctional host defense peptidomimetic. Chem Biol 20:1286–1295CrossRefPubMedGoogle Scholar
  52. 52.
    Mancek M, Pristovsek P, Jerala R (2002) Identification of LPS-binding peptide fragment of MD-2, a toll-receptor accessory protein. Biochem Biophys Res Commun 292:880–885CrossRefPubMedGoogle Scholar
  53. 53.
    Jiao YL, Wu MP (2008) Apolipoprotein A-I diminishes acute lung injury and sepsis in mice induced by lipoteichoic acid. Cytokine 43:83–87CrossRefPubMedGoogle Scholar
  54. 54.
    Ruzin A, Singh G, Severin A, Yang Y, Dushin RG, Sutherland AG, Minnick A, Greenstein M, May MK, Shlaes DM, Bradford PA (2004) Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant Gram-positive bacteria. Antimicrob Agents Chemother 48:728–738CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bucki R, Byfield FJ, Kulakowska A, McCormick ME, Drozdowski W, Namiot Z, Hartung T, Janmey PA (2008) Extracellular gelsolin binds lipoteichoic acid and modulates cellular response to proinflammatory bacterial wall components. J Immunol 181:4936–4944CrossRefPubMedGoogle Scholar
  56. 56.
    Nell MJ, Tjabringa GS, Wafelman AR, Verrijk R, Hiemstra PS, Drijfhout JW, Grote JJ (2006) Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application. Peptides 27:649–660CrossRefPubMedGoogle Scholar
  57. 57.
    Cao L, Dai C, Li Z, Fan Z, Song Y, Wu Y, Cao Z, Li W (2012) Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS One 7:e40135CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Krusong K, Pollpipat P, Supungul P, Tassanakajon A (2012) A comparative study of antimicrobial properties of crustinPm1 and crustinPm7 from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 36:208–215CrossRefPubMedGoogle Scholar
  59. 59.
    Epand RF, Sarig H, Mor A, Epand RM (2009) Cell-wall interactions and the selective bacteriostatic activity of a miniature oligo-acyl-lysyl. Biophys J 97:2250–2257CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ruan Y, Shen T, Wang Y, Hou M, Li J, Sun T (2013) Antimicrobial peptide LL-37 attenuates LTA induced inflammatory effect in macrophages. Int Immunopharmacol 15:575–580CrossRefPubMedGoogle Scholar
  61. 61.
    Lee S-H, Baek D-H (2012) Antibacterial and neutralizing effect of human β-defensins on Enterococcus faecalis and Enterococcus faecalis lipoteichoic acid. J Endod 38:351–356CrossRefPubMedGoogle Scholar
  62. 62.
    Som A, Navasa N, Percher A, Scott RW, Tew GN, Anguita J (2012) Identification of synthetic host defense peptide mimics that exert dual antimicrobial and anti-inflammatory activities. Clin Vacc Immunol 19:1784–1791CrossRefGoogle Scholar
  63. 63.
    Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225PubMedGoogle Scholar
  64. 64.
    Williams KL (2007) Endotoxins. In: Williams KL (ed) Pyrogens, LAL-testing and depyrogenation drugs and pharmaceutical sciences, vol 167, 3rd edn. CRC Press, Boca Raton, FLGoogle Scholar
  65. 65.
    Morath S, von Aulock S, Hartung T (2005) Structure/function relationships of lipoteichoic acids. J Endotoxin Res 11:348–356CrossRefPubMedGoogle Scholar
  66. 66.
    Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, Kim DW, Lee K, Chung DK, Ju HR, Han SH (2009) Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol 9:127–133CrossRefPubMedGoogle Scholar
  67. 67.
    Ziegler-Heitbrock HW, Thiel E, Futterer A, Herzog V, Wirtz A, Riethmuller G (1988) Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int J Cancer 41:456–461CrossRefPubMedGoogle Scholar
  68. 68.
    Ralph P, Nakoinz I (1977) Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J Immunol 119:950–954PubMedGoogle Scholar
  69. 69.
    Moesby L, Hansen EW, Christensen JD (1997) Pyrogen testing of lipid-based TPN using Mono Mac 6 monocyte cell line and DELFIA. J Clin Pharm Ther 22:327–333CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations