Advertisement

On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics

  • Mark D. Tarn
  • Nicole PammeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)

Abstract

Magnetic particles have become popular in recent years for immunoassays due to their high surface-to-volume ratio and the ease of their manipulation. However, such assays also require multiple reaction and washing steps that are both time-consuming and manually laborious. Here, we describe a setup and methodology for performing rapid immunoassays on magnetic particles in continuous flow via their deflection through multiple laminar flow streams of reagents and washing solutions. In particular, we focus on the use of the microfluidic platform for a C-reactive protein (CRP) sandwich immunoassay in less than 60 s.

Key words

Continuous flow Deflection Immunoassays Microfluidics Microparticles Multilaminar flow 

References

  1. 1.
    Tarn MD, Pamme N (2013) Microfluidics. In: Reedijk J (ed) Elsevier reference module in chemistry, molecular sciences and chemical engineering. Elsevier, Waltham, MA. doi: 10.1016/B978-0-12-409547-2.05351-8 Google Scholar
  2. 2.
    Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113(4):2550–2583CrossRefGoogle Scholar
  3. 3.
    Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38CrossRefGoogle Scholar
  4. 4.
    Pamme N (2012) On-chip bioanalysis with magnetic particles. Curr Opin Chem Biol 16(3–4):436–443CrossRefGoogle Scholar
  5. 5.
    Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40Google Scholar
  6. 6.
    Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563CrossRefGoogle Scholar
  7. 7.
    Tarn MD, Lopez-Martinez MJ, Pamme N (2014) On-chip processing of particles and cells via multilaminar flow streams. Anal Bioanal Chem 406(1):139–161CrossRefGoogle Scholar
  8. 8.
    Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Crossing microfluidic streamlines to lyse, label and wash cells. Lab Chip 8(9):1448–1453CrossRefGoogle Scholar
  9. 9.
    Kantak C, Beyer S, Yobas L, Bansal T, Trau D (2011) A ‘microfluidic pinball’ for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules. Lab Chip 11(6):1030–1035CrossRefGoogle Scholar
  10. 10.
    Sochol RD, Li S, Lee LP, Lin L (2012) Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing. Lab Chip 12(20):4168–4177CrossRefGoogle Scholar
  11. 11.
    Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7(7):581–587CrossRefGoogle Scholar
  12. 12.
    Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided fluidic self-assembly of microtrains using railed microfluidics. Paper presented at the FNANO08—5th Annual Conference on Foundations of Nanoscience, Snowbird Cliff Lodge, Snowbird, Utah, USA, 22–25 April 2008.Google Scholar
  13. 13.
    Seger U, Gawad S, Johann R, Bertsch A, Renaud P (2004) Cell immersion and cell dipping in microfluidic devices. Lab Chip 4(2):148–151CrossRefGoogle Scholar
  14. 14.
    Augustsson P, Åberg L, Swärd-Nilsson A-M, Laurell T (2009) Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing. Microchim Acta 164(3–4):269–277CrossRefGoogle Scholar
  15. 15.
    Chiang Y-Y, West J (2013) Ultrafast cell switching for recording cell surface transitions: new insights into epidermal growth factor receptor signalling. Lab Chip 13(6):1031–1034CrossRefGoogle Scholar
  16. 16.
    Yang S, Ji B, Ündar A, Zahn JD (2006) Microfluidic devices for continuous blood plasma separation and analysis during pediatric cardiopulmonary bypass procedures. ASAIO J 52(6):698–704CrossRefGoogle Scholar
  17. 17.
    Toyama K, Yamada M, Seki M (2012) Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange. Biomed Microdevices 14(4):751–757CrossRefGoogle Scholar
  18. 18.
    Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksor M, Hohmann S, Nystrom T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7(1):71–76CrossRefGoogle Scholar
  19. 19.
    Kim T, Cheng L-J, Kao M-T, Hasselbrink EF, Guo L, Meyhofer E (2009) Biomolecular motor-driven molecular sorter. Lab Chip 9(9):1282–1285CrossRefGoogle Scholar
  20. 20.
    Tan AP, Dudani JS, Arshi A, Lee RJ, Tse HTK, Gossett DR, Di Carlo D (2014) Continuous-flow cytomorphological staining and analysis. Lab Chip 14(3):522–531CrossRefGoogle Scholar
  21. 21.
    Li S, Ding X, Mao Z, Chen Y, Nama N, Guo F, Li P, Wang L, Cameron CE, Huang TJ (2015) Standing surface acoustic wave (SSAW)-based cell washing. Lab Chip 15(1):331–338CrossRefGoogle Scholar
  22. 22.
    Peyman SA, Iles A, Pamme N (2008) Rapid on-chip multi-step (bio)chemical procedures in continuous flow—manoeuvring particles through co-laminar reagent streams. Chem Commun 10:1220–1222CrossRefGoogle Scholar
  23. 23.
    Peyman SA, Patel H, Belli N, Iles A, Pamme N (2009) A microfluidic system for performing fast, sequential biochemical procedures on the surface of mobile magnetic particles in continuous flow. Magnetohydrodynamics 45(3):361–370Google Scholar
  24. 24.
    Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110–3117CrossRefGoogle Scholar
  25. 25.
    Phurimsak C, Tarn MD, Peyman SA, Greenman J, Pamme N (2014) On-chip determination of C-reactive protein using magnetic particles in continuous flow. Anal Chem 86(21):10552–10559CrossRefGoogle Scholar
  26. 26.
    Vojtíšek M, Iles A, Pamme N (2010) Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles. Biosens Bioelectron 25(9):2172–2176CrossRefGoogle Scholar
  27. 27.
    Tarn MD, Fakhrullin RF, Paunov VN, Pamme N (2013) Microfluidic device for the rapid coating of magnetic cells with polyelectrolytes. Mater Lett 95:182–185CrossRefGoogle Scholar
  28. 28.
    Sasso LA, Undar A, Zahn JD (2010) Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay. Microfluid Nanofluid 9(2–3):253–265CrossRefGoogle Scholar
  29. 29.
    Sasso L, Johnston I, Zheng M, Gupte R, Ündar A, Zahn J (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612CrossRefGoogle Scholar
  30. 30.
    Sasso LA, Aran K, Guan Y, Ündar A, Zahn JD (2013) Continuous monitoring of inflammation biomarkers during simulated cardiopulmonary bypass using a microfluidic immunoassay device—A pilot study. Artif Organs 37(1):E9–E17CrossRefGoogle Scholar
  31. 31.
    Zhou Y, Wang Y, Lin Q (2010) A microfluidic device for continuous-flow magnetically controlled capture and isolation of microparticles. J Microelectromech Syst 19(4):743–751CrossRefGoogle Scholar
  32. 32.
    Lee SHS, Hatton TA, Khan SA (2011) Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates. Microfluid Nanofluid 11(4):429–438CrossRefGoogle Scholar
  33. 33.
    Gao Y, Lam AWY, Chan WCW (2013) Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device. ACS Appl Mater Interfaces 5(8):2853–2860CrossRefGoogle Scholar
  34. 34.
    Ganguly R, Hahn T, Hardt S (2010) Magnetophoretic mixing for in situ immunochemical binding on magnetic beads in a microfluidic channel. Microfluid Nanofluid 8(6):739–753CrossRefGoogle Scholar
  35. 35.
    Karle M, Miwa J, Czilwik G, Auwaerter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290CrossRefGoogle Scholar
  36. 36.
    Karle M, Woehrle J, Miwa J, Paust N, Roth G, Zengerle R, von Stetten F (2011) Controlled counter-flow motion of magnetic bead chains rolling along microchannels. Microfluid Nanofluid 10(4):935–939CrossRefGoogle Scholar
  37. 37.
    Tsai SSH, Wexler JS, Wan J, Stone HA (2011) Conformal coating of particles in microchannels by magnetic forcing. Appl Phys Lett 99(15):153509CrossRefGoogle Scholar
  38. 38.
    Tsai SSH, Wexler JS, Wan J, Stone HA (2013) Microfluidic ultralow interfacial tensiometry with magnetic particles. Lab Chip 13(1):119–125CrossRefGoogle Scholar
  39. 39.
    Moon B-U, Hakimi N, Hwang DK, Tsai SSH (2014) Microfluidic conformal coating of non-spherical magnetic particles. Biomicrofluidics 8(5):052103CrossRefGoogle Scholar
  40. 40.
    McCreedy T (2000) Fabrication techniques and materials commonly used for the production of microreactors and micro total analytical systems. TrAC, Trends Anal Chem 19(6):396–401CrossRefGoogle Scholar
  41. 41.
    Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321(24):4115–4122CrossRefGoogle Scholar
  42. 42.
    Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryThe University of HullHullUK

Personalised recommendations