Abstract
We demonstrate an accurate and sensitive quantification of mutated KRAS oncogene in genomic DNA, using droplet-based microfluidics and digital PCR.
Key words
- Droplet microfluidics
- Digital PCR
- Biomarkers
- KRAS
- Cancer
This is a preview of subscription content, access via your institution.
Buying options










References
Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799
Stratton MR, Campbell PJ et al (2009) The cancer genome. Nature 458(7239):719–724
Diehl F, Diaz LA (2007) Digital quantification of mutant DNA in cancer patients. Curr Opin Oncol 19(1):36–42
Sawyers CL (2008) Cancer biomarker problem. Nature 452:548–552
Lecomte T, Berger A, Zinzindohou F et al (2002) Detection of free circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 100(5):542–548
Li J, Wang L, Mamon H, Kulke MH et al (2008) Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 14(5):579–584
Milbury CA, Li J, Makrigiorgos MG (2009) PCR-based methods for the enrichment of minority alleles and mutations. Clin Chem 55(4):632–640
Caen O, Nizard P et al (2015) Digital PCR compartmentalization II. Contribution for the quantitative detection of circulating tumor DNA. Med Sci (Paris) 31(2):180–186
Foy CA, Parkes HC (2001) Emerging homogeneous DNA-based technologies in the clinical laboratory. Clin Chem 47(6):990–1000
Whitcombe D, Newton CR, Little S (1998) Advances in approaches to DNA-based diagnostics. Curr Opin Biotechnol 9(6):602–608
Carotenuto P, Roma C, Rachiglio AM et al (2010) Detection of KRAS mutations in colorectal carcinoma patients with an integrated PCR/sequencing and real-time PCR approach. Pharmacogenomics 11(8):1169–1179
Dufort S, Richard MJ, de Fraipont F (2009) Pyrosequencing method to detect KRAS mutation in formalin-fixed and paran-embedded tumor tissues. Anal Biochem 391(2):166–168
Ogino S, Kawasaki T, Brahmandam M et al (2005) Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn 7(3):413–421
Lievre A, Bachet JB, Valrie Boige V et al (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26(3):374–379
Angulo B, Garca-Garca E, Martinez R et al (2010) A commercial real-time PCR kit provides greater sensitivity than direct sequencing to detect KRAS mutations: a morphology-based approach in colorectal carcinoma. J Mol Diagn 12(3):292–299
Tsiatis AC, Norris-Kirby A, Rich RG et al (2010) Comparison of sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications. J Mol Diagn 12(4):425–432
Sykes PJ, Neoh SH, Brisco MJ et al (1992) Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13(3):444–449
Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96(16):9236–9241
Diehl F, Schmidt K, Durkee KH et al (2008) Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135(2):489–498
Dong SM, Traverso G, Johnson C et al (2001) Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst 93(11):858–886
Sefrioui D, Sarafan-Vasseur N et al (2015) Clinical value of chip-based digital-PCR platform for the detection of circulating DNA in metastatic colorectal cancer. Dig Liver Dis 47(10):884–890
Shendure J, Porreca GJ, Reppas NB et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732
Leamon JH, Lee WL, Tartaro KR et al (2003) A massively parallel picotiter plate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis 24:3769–3777
Dressman D, Yan H, Traverso G et al (2003) Transforming single DNA molecules into uorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100:8817–8822
Li M, Diehl F, Dressman D et al (2006) Beaming up for detection and quantification of rare sequence variants. Nat Methods 3(2):95–97
Nakano M, Stone HA, Komatsu GPJ et al (2005) Single-molecule PCR using water-in-oil emulsion. J Biotechnol 102:117–124
Chen W, Balaj L et al (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in Glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109
Pekin D, Skhiri Y, Baret J-C et al (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166
Perkins G, Lu H, Garlan F, Taly V (2017) Droplet-Based Digital PCR: Application in Cancer Research. Adances in Clinical Chemistry (85): 44–91
Holtze C, Rowat AC, Agresti JJ et al (2008) Biocompatible surfactants for water-in- fluorocarbon emulsions. Lab Chip 8(10):1632–1639
Lievre A, Bachet JB, Le Corre D et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995
Xia YN, Whitesides GM (2006) Soft lithography. Angew. Chem. Int. Ed 37(5):551–575
Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82:364–366
Mazutis L, Baret J-C, Treacy P et al (2009) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9: 2902–2908
Soh J, Okumura N, Lockwood WW et al (2009) Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One 4(10):e7464
Mazutis L, Fallah Araghi A, Miller OJ et al (2009) Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem 81(12):4813–4821
Acknowledgments
This work was supported by Région Alsace, the Ministère de l'Enseignement Supérieur et de la Recherche, the Université de Strasbourg, the Université Paris Descartes, the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the Institut National du Cancer (INCa, no. 2009-1-RT-03-US-1) and the Association pour la recherche sur le Cancer (ARC, no. SL220100601375).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media LLC
About this protocol
Cite this protocol
Pekin, D., Taly, V. (2017). Droplet-Based Microfluidics Digital PCR for the Detection of KRAS Mutations. In: Taly, V., Viovy, JL., Descroix, S. (eds) Microchip Diagnostics. Methods in Molecular Biology, vol 1547. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6734-6_12
Download citation
DOI: https://doi.org/10.1007/978-1-4939-6734-6_12
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-6732-2
Online ISBN: 978-1-4939-6734-6
eBook Packages: Springer Protocols