Advertisement

Multiplex Detection of KRAS Mutations Using Passive Droplet Fusion

  • Deniz Pekin
  • Valerie Taly
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1547)

Abstract

We describe a droplet microfluidics method to screen for multiple mutations of a same oncogene in a single experiment using passive droplet fusion. Genomic DNA from H1573 cell-line was screened for the presence of the six common mutations of the KRAS oncogene as well as wild-type sequences with a detection efficiency of 98 %. Furthermore, the mutant allelic fraction of the cell-line was also assessed correctly showing that the technique is quantitative

Key words

Droplet microfluidics Digital PCR Multiplexing Passive droplet fusion Biomarkers KRAS Cancer 

Notes

Acknowledgments

This work was supported by Région Alsace, the Ministère de l’Enseignement Supérieur et de la Recherche, the Université de Strasbourg, the Université Paris Descartes, the Centre National de la Recherche Scientifique (CNRS), the Institut National de la Santé et de la Recherche Médicale (INSERM), the Institut National du Cancer (INCa, no. 2009–1-RT-03-US-1), and the Association pour la recherche sur le Cancer (ARC, no. SL220100601375).

References

  1. 1.
    Mazutis L, Baret JC, Griffiths AD (2009) A fast and efficient microfluidic system for highly selective one to one droplet fusion. Lab Chip 9(18):2665–2672CrossRefGoogle Scholar
  2. 2.
    Pekin D, Skhiri Y, Baret JC, Le Corre D, Mazutis L, Ben Salem C, Millot F, El Harrak A, Hutchison JB, Larson JW, Link DR, Laurent-Puig P, Griffiths AD, Taly V (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166CrossRefGoogle Scholar
  3. 3.
    Baret JC, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858CrossRefGoogle Scholar
  4. 4.
    Mazutis, L, BaretJC, Treacy, P, Skhiri, Y, Araghi, AF, Ryckelynck, M, Taly, V, and Griffiths, A. D. (2009) Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9(20), 2902–2908Google Scholar
  5. 5.
    Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Cote JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995CrossRefGoogle Scholar
  6. 6.
    Xia YN, Whitesides GM (2006) Soft lithography. Angew Chem Int Ed 37(5):551–575Google Scholar
  7. 7.
    Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, Koster S, Duan H, Holtze C, Weitz DA, Griffiths AD, Merten CA (2008) Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. Chem Biol 15(5):427–437CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.CNRS, Univ. Bordeaux, CRPP, UPR 8641PessacFrance
  2. 2.INSERM UMRS1147, CNRS SNC 5014Université Paris Descartes, Equipe labellisée Ligue Nationale contre le cancer 2016Paris Cedex 06France

Personalised recommendations