Skip to main content

Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples

  • Protocol
  • First Online:
Microchip Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1547))

Abstract

Microfluidics has become an important tool for the commercial product development in diagnostics. This article will focus on current technical demands during the development process such as material and integration challenges. Furthermore, we present data on the diagnostics market as well as examples of microfluidics-enabled systems currently under commercial development or already on the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B-Chem 1:244–248

    Article  CAS  Google Scholar 

  2. Yetisen AK, Volpatti LR (2014) Patent protection and licensing in microfluidics. Lab Chip 14:2217–2225

    Article  CAS  Google Scholar 

  3. Becker H (2010) Lost in translation. Lab Chip 10:813–815

    Article  CAS  Google Scholar 

  4. Klapperich CM (2009) Microfluidic diagnostics: time for industry standards. Expert Rev Med Devices 6:211–213

    Article  Google Scholar 

  5. Becker H (2010) One size fits all? Lab Chip 10:1894–1897

    Article  CAS  Google Scholar 

  6. van Heeren H (2012) Standards for connecting microfluidic devices? Lab Chip 6:1022–1025

    Article  Google Scholar 

  7. Zhixiong H, Wenli L, Baoyu H et al (2014) Metrological standardizing for future microfluidic-based point-of-care diagnostic products. Sens Transducers 173:250–255

    Google Scholar 

  8. van Heeren H, Tantra R, Salomon P (2015) Microfluidic devices: a road forward by standardization of interconnects and classification. Microfluid Nanofluidics 19(5):1203–1207

    Article  Google Scholar 

  9. Gärtner C, Becker H, Anton B et al (2004) Microfluidic toolbox: tools and standardization solutions for microfluidic devices for life sciences applications. Proc. SPIE 5345, Microfluidics, BioMEMS, and Medical Microsystems II, pp 159–162. doi:10.1117/12.538373

  10. Mark D, Häberle S, Roth G et al (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  CAS  Google Scholar 

  11. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251

    Article  CAS  Google Scholar 

  12. Clarke SF, Foster JR (2012) A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br J Biomed Sci 69(2):83–93

    CAS  Google Scholar 

  13. Yole Developpement, Microfluidic Applications2015. http://www.i-micronews.com/component/hikashop/product/p2015-microfluidic-applications-in-the-pharmaceutical-life-sciences-in-vitro-diagnostic-and-medical-device-markets.html. Accessed 6 Oct 2015

  14. Yole Developpement, Emerging Markets for Microfluidic Applications, Report 2011

    Google Scholar 

  15. Couillard D (2006) Managing in a sea of uncertainty: leadership, learning, and resources for the high tech firm. Presses internationales Polytechnique, Montreal

    Google Scholar 

  16. Yager P, Edwards T, Fu E et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Article  CAS  Google Scholar 

  17. Becker H (2009) Hype, hope and hubris: the quest for the killer application in microfluidics. Lab Chip 9:2119–2122

    Article  CAS  Google Scholar 

  18. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134

    Article  CAS  Google Scholar 

  19. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350

    Article  CAS  Google Scholar 

  20. Bousse L, Mouradian S, Minalla A et al (2001) Protein sizing on a microchip. Anal Chem 73(6):1207–1212

    Article  CAS  Google Scholar 

  21. Becker H (2008) Microfluidics: a technology coming of age. Med Device Technol 19(3):21–24

    CAS  Google Scholar 

  22. Lagally ET, Scherer JR, Blazej RG et al (2004) Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem 76(11):3162–3170

    Article  CAS  Google Scholar 

  23. Easley CJ, Karlinsey JM, Bienvenue JM et al (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci USA 103(51):19272–19277

    Article  CAS  Google Scholar 

  24. Kim J, Johnson M, Hill P et al (2009) Microfluidic sample preparation: cell lysis and nucleic acid purification. Integr Biol 1:574–586

    Article  CAS  Google Scholar 

  25. Mukherjee S, Kang TG, Chen Y et al (2009) Plasma separation from blood: the ‘lab-on-a-chip’approach. Crit Rev Biomed Eng 37:517–529

    Article  Google Scholar 

  26. Kersaudy-Kerhoas M, Sollier E (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13:3323–3346

    Article  CAS  Google Scholar 

  27. Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111

    Article  CAS  Google Scholar 

  28. Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluidics 7(1):1–2

    Article  CAS  Google Scholar 

  29. Li S, Xu Z, Mazzeo A et al (2008) Review of production of microfluidic devices: material, manufacturing, and metrology. Proc. MEMS, MOEMS, and Micromachining III: Proceedings of SPIE 6993:69930F. doi:10.1117/12.781942

  30. Hlawatsch N, Klemm R, Carstens C et al (2012) A lab-on-a-chip system for the development of complex assays using modular microfluidic components. Proc SPIE 8251, Microfluidics, BioMEMS, and Medical Microsystems X, 82510D. doi: 10.1117/12.910269

  31. Jen C, Wu C, Lin Y et al (2003) Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip 3:77–81

    Article  CAS  Google Scholar 

  32. Hagmeyer B, Zechnall F, Stelzle M (2014) Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves. Biomicrofluidics 198(5). Article 056501

    Google Scholar 

  33. Hu G, Li D (2007) Multiscale phenomena in microfluidics and nanofluidics. Chem Eng Sci 62:3443–3454

    Article  CAS  Google Scholar 

  34. Erickson D (2005) Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices. Microfluid Nanofluidics 1:301–318

    Article  CAS  Google Scholar 

  35. Marques M, Fernandes P (2011) Microfluidic devices: useful tools for bioprocess intensification. Molecules 16:8368–8401

    Article  CAS  Google Scholar 

  36. Becker H, Gärtner C (2012) Polymeric microfluidic devices for high performance optical imaging and detection methods. In: Fritzsche W, Popp J (eds) Optical nano- and microsystems for bioanalytics. Springer, Berlin, pp. 271–288

    Chapter  Google Scholar 

  37. Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46(11):2396–2406

    Article  CAS  Google Scholar 

  38. Zhang X, Haswell SJ (2006) Materials matter in microfluidic devices. MRS Bull 31(2):95–99

    Article  CAS  Google Scholar 

  39. Hitzbleck M, Delamarche E (2013) Reagents in microfluidics: an “in” and “out”challenge. Chem Soc Rev 42:8494–8516

    Article  CAS  Google Scholar 

  40. Lauks IR, Wieck HJ, Zelin MP et al (1988) Disposable sensing device for real time fluid analysis. US 5096669 A, priority date 15 Sep 1988

    Google Scholar 

  41. Chen D, Mauk M, Qiu X et al (2010) An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12(4):705–719

    Article  Google Scholar 

  42. Disch A, Mueller C, Reinecke H (2007) Low cost production of disposable microfluidics by blister packaging technology. Conf Proc IEEE Eng Med Biol Soc 2007:6323–6326

    CAS  Google Scholar 

  43. Hugo S, Land K, Becker H (2013) Characterization of microfluidic components for low-cost point-of-care devices. Proc. MicroTAS 2013, Freiburg, pp 461–463

    Google Scholar 

  44. Jokerst JV, Floriano PN, Christodoulides N et al (2008) Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need. Lab Chip 8:2079–2090

    Article  CAS  Google Scholar 

  45. Selvakumar S, Linares R, Oppenheimer A et al (2012) Variation analysis of flow rate delivered using a blister pump. Proc. SPIE 8251, Microfluidics, BioMEMS, and Medical Microsystems X, 82510I. doi: 10.1117/12.907502

  46. Inamdar T, Anthony BW (2013) Characterizing fluidic seals for on-board reagent delivery. Proc. SPIE 8615, Microfluidics, BioMEMS, and Medical Microsystems XI, 861516. doi:10.1117/12.2006257

  47. van Oordt T, Barb Y, Smetana J et al (2013) Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 13(15):2888–2892

    Article  Google Scholar 

  48. Garcia E, Kirkham JR, Hatch AV et al (2004) Controlled microfluidic reconstitution of functional protein from an anhydrous storage depot. Lab Chip 4(1):78–82

    Article  CAS  Google Scholar 

  49. Seetharam R, Wada Y, Ramachandran S et al (2006) Long-term storage of bionanodevices by freezing and lyophilization. Lab Chip 6:1239–1242

    Article  CAS  Google Scholar 

  50. Fritzsche W, Popp J (2012) Bioanalytics, in optical nano- and microsystems for bioanalytics, Springer, Berlin, pp 271–288

    Google Scholar 

  51. Pires NMM, Dong T, Hanke U et al (2014) Recent developments in optical detection technologies in lab-on-a-chipdevices for biosensing applications. Sensors 14:15458–15479

    Article  Google Scholar 

  52. Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: convergence of fields. Chem Soc Rev 44:5320–5340

    Article  CAS  Google Scholar 

  53. Lee H, Liu Y, Ham D et al (2007) Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 7(3):331–337

    Article  CAS  Google Scholar 

  54. Huang Y, Mason AJ (2013) Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19):3929–3934

    Article  CAS  Google Scholar 

  55. Pekas N, Porter MD, Tondra M et al (2004) Giant magnetoresistance monitoring of magnetic picodroplets in an integrated microfluidic system. Appl Phys Lett 85(20):4783–4785

    Article  CAS  Google Scholar 

  56. Becker H, Carstens C, Kuhlmeier D et al (2012) Stationary fluidics: moving target molecules on beads through non-moving liquids for molecular diagnostic assays. Proc MicroTAS 2012, Okinawa, pp 791–793

    Google Scholar 

  57. Ashok PC, Dholakia K (2012) Microfluidic Raman spectroscopy for biochemical sensing and analysis. In: Fritzsche W, Popp J (eds) Bioanalytics, in optical nano- and microsystems for bioanalytics. Springer, Berlin, pp. 247–268

    Chapter  Google Scholar 

  58. Becker H (2009) It’s the economy. Lab Chip 9:2759–2762

    Article  CAS  Google Scholar 

  59. https://www.abbottpointofcare.com/products-services/istat-test-cartridges. Accessed 8 Dec 2015

  60. http://www.cepheid.com/us/cepheid-solutions/clinical-ivd-tests/healthcare-associated-infections. Accessed 8 Dec 2015

  61. Becker H, Klemm R, Dietze W et al (2015) Sample-in answer-out point-of-care cartridge for fast MTB diagnostics as part of a universal diagnostics system for global health applications. Proc. MicroTAS 2015, Gyeongju, pp 963–965

    Google Scholar 

  62. Kim L (2013) Overview on the microfluidic diagnostics commercial landscape. In: Jenkins G, Mansfield CD (eds) Microfluidic diagnostics, methods in molecular biology, Springer, New York, vol 99. pp 65–84.

    Google Scholar 

  63. Laroy W, Ladestein P (2015) MyCartis NV company profile. Biomark Med 9(2):85–88

    Article  CAS  Google Scholar 

  64. Hefti M, Raymond F, lmmink A et al (2013) Next generation, fast and accurate point-of-care test for NT-proBNP based on Magnotech technology. Point Care 12(4):171

    Google Scholar 

  65. Dittmer WU, Evers TH, Hardemann WM et al (2010) Rapid, high sensitivity, point-of-care test for cardiac troponin based on optomagnetic biosensor. Clin Chim Acta 411:868–873

    Article  CAS  Google Scholar 

  66. Wilson PK, Szymansk M, Porter R (2013) Standardisation of metalloimmunoassay protocols for assessment of silver nanoparticle antibody conjugates. J Immunol Methods 387:303–307

    Article  CAS  Google Scholar 

  67. http://www.celula-inc.com/. Accessed 5 Dec 2015

  68. http://www.pixcell-medical.com/. Accessed 5 Dec 2015

  69. Gubala V, Harris LF, Ricco A et al (2012) Point of care diagnostics: status and future. Anal Chem 84:487–515

    Article  CAS  Google Scholar 

  70. https://www.aacc.org/publications/cln/articles/2013/may/mobile. Accessed 8 Dec 2015

Download references

Acknowledgments

Part of the work was carried out within the frame of the EU-FP7 project ROUTINE, contract no. 304941 (www.routinefp7.eu). We thank Nicolas Demierre, Keith Page, Jeroen Nieuwenhuis, Stephen Floe, and Klaus Schindlbeck for providing the images for Subheading3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Becker, H., Gärtner, C. (2017). Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples. In: Taly, V., Viovy, JL., Descroix, S. (eds) Microchip Diagnostics. Methods in Molecular Biology, vol 1547. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6734-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6734-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6732-2

  • Online ISBN: 978-1-4939-6734-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics