Advertisement

Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy

  • Romain Linares
  • Sisareuth Tan
  • Céline Gounou
  • Alain R. BrissonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1545)

Abstract

Extracellular vesicles (EVs) are cell-derived vesicles that are present in blood and other body fluids. EVs raise major interest for their diverse physiopathological roles and their potential biomedical applications. However, the characterization and quantification of EVs constitute major challenges, mainly due to their small size and the lack of methods adapted for their study. Electron microscopy has made significant contributions to the EV field since their initial discovery. Here, we describe the use of two transmission electron microscopy (TEM) techniques for imaging and quantifying EVs. Cryo-TEM combined with receptor-specific gold labeling is applied to reveal the morphology, size, and phenotype of EVs, while their enumeration is achieved after high-speed sedimentation on EM grids.

Key words

Blood plasma Extracellular vesicles (EVs) Transmission electron microscopy (TEM) Cryo-TEM Immuno-gold labeling Annexin-A5 (Anx5) Phosphatidylserine (PS) Antibodies (Abs) Erythrocytes Platelets 

Notes

Acknowledgment

This study was supported by ANR (grant 11-BSV1-03501-PlacentA5 to A.B.).

References

  1. 1.
    Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593CrossRefPubMedGoogle Scholar
  2. 2.
    György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci CMLS 68:2667–2688CrossRefPubMedGoogle Scholar
  3. 3.
    Van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705CrossRefPubMedGoogle Scholar
  4. 4.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zwicker JI, Trenor CC, Furie BC, Furie B (2011) Tissue factor-bearing microparticles and thrombus formation. Arterioscler Thromb Vasc Biol 31:728–733CrossRefPubMedGoogle Scholar
  6. 6.
    Morel O, Toti F, Hugel B, Bakouboula B, Camoin-Jau L, Dignat-George F, Freyssinet J-M (2006) Procoagulant microparticles: disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26:2594–2604CrossRefPubMedGoogle Scholar
  7. 7.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659CrossRefPubMedGoogle Scholar
  8. 8.
    VanWijk MJ, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287CrossRefPubMedGoogle Scholar
  9. 9.
    Boilard E, Nigrovic PA, Larabee K, Watts GFM, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Delabranche X, Boisramé-Helms J, Asfar P, Berger A, Mootien Y, Lavigne T, Grunebaum L, Lanza F, Gachet C, Freyssinet J-M, Toti F, Meziani F (2013) Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med 39:1695–1703CrossRefPubMedGoogle Scholar
  11. 11.
    Manly DA, Wang J, Glover SL, Kasthuri R, Liebman HA, Key NS, Mackman N (2010) Increased microparticle tissue factor activity in cancer patients with venous thromboembolism. Thromb Res 125:511–512CrossRefPubMedGoogle Scholar
  12. 12.
    Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM (1979) Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci Lond Engl 124:423–441CrossRefGoogle Scholar
  14. 14.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345CrossRefPubMedGoogle Scholar
  15. 15.
    Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4:594–600CrossRefPubMedGoogle Scholar
  16. 16.
    Arraud N, Linares R, Tan S, Gounou C, Pasquet J-M, Mornet S, Brisson AR (2014) Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 12:614–627CrossRefPubMedGoogle Scholar
  17. 17.
    Arraud N, Gounou C, Linares R, Brisson AR (2015) A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles. J Thromb Haemost 13(2):237–247. doi: 10.1111/jth.12767 CrossRefPubMedGoogle Scholar
  18. 18.
    Van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R (2010) Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 8:2596–2607CrossRefPubMedGoogle Scholar
  19. 19.
    György B, Szabó TG, Turiák L, Wright M, Herczeg P, Lédeczi Z, Kittel Á, Polgár A, Tóth K, Dérfalvi B, Zelenák G, Böröcz I, Carr B, Nagy G, Vékey K, Gay S, Falus A, Buzás EI (2012) Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases. PLoS ONE 7:e49726CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Nolte-’t Hoen EN, Piper MG, Sivaraman S, Skog J, Théry C, Wauben MH, Hochberg F (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. doi: 10.3402/jev.v2i0.20360 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13:269–288CrossRefPubMedGoogle Scholar
  22. 22.
    Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339CrossRefPubMedGoogle Scholar
  23. 23.
    Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948CrossRefPubMedGoogle Scholar
  24. 24.
    Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799PubMedGoogle Scholar
  25. 25.
    Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3:PMCID: PMC4159761. doi: 10.3402/jev.v3.23430 CrossRefGoogle Scholar
  26. 26.
    Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Editor Board Juan Bonifacino Al Chapter 3:Unit 3.22.Google Scholar
  27. 27.
    Kralj-Iglic V, Sustar B-Z, Stukelj F, Bobojevic J, Ogorevc K, Mam S, Mancek-Keber J, Rozman VP, Hagerstrand K-IV (2011) Nanoparticles isolated from blood: a reflection of vesiculability of blood cells during the isolation process. Int J Nanomedicine 6:2737–2748CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tatischeff I, Larquet E, Falcón-Pérez JM, Turpin P-Y, Kruglik SG (2012) Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles. doi: 10.3402/jev.v1i0.19179 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Yuana Y, Koning RI, Kuil ME, Rensen PCN, Koster AJ, Bertina RM, Osanto S (2013) Cryo-electron microscopy of extracellular vesicles in fresh plasma. J Extracell Vesicles. doi: 10.3402/jev.v2i0.21494 PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228CrossRefPubMedGoogle Scholar
  31. 31.
    Miller MF (1974) Principles and techniques of electron microscopy. Biol Appl 1974:89–128Google Scholar
  32. 32.
    Brisson AR, Mornet S (2007) Patent WO/2007/122259.Google Scholar
  33. 33.
    Lacroix R, Judicone C, Poncelet P, Robert S, Arnaud L, Sampol J, Dignat-George F (2012) Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost 10:437–446CrossRefPubMedGoogle Scholar
  34. 34.
    Richter R, Mukhopadhyay A, Brisson A (2003) Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys J 85:3035–3047CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, Albert A, Shnayder R, Gobezie R, Nigrovic PA, Farndale RW, Robinson WH, Brisson A, Lee DM, Boilard E (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5:235–249CrossRefPubMedGoogle Scholar
  36. 36.
    Zonneveld MI, Brisson AR, van Herwijnen MJC, Tan S, van de Lest CHA, Redegeld FA, Garssen J, Wauben MHM, Nolte-’t Hoen ENM (2014) Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J Extracell Vesicles. doi: 10.3402/jev.v3.24215 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, LoGuidice L, Soto H, Garrett M, Zhu LD, Sivaraman S, Chen C, Wong ET, Carter BS, Hochberg FH, Breakefield XO, Skog J (2013) BEAMing and droplet digital pcr analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Romain Linares
    • 1
  • Sisareuth Tan
    • 1
  • Céline Gounou
    • 1
  • Alain R. Brisson
    • 1
    Email author
  1. 1.Molecular Imaging and NanoBioTechnology, UMR-5248-CBMNCNRS-University of Bordeaux-IPBPessacFrance

Personalised recommendations