Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission

  • Pascal LeblancEmail author
  • Zaira E. Arellano-Anaya
  • Emilien Bernard
  • Laure Gallay
  • Monique Provansal
  • Sylvain Lehmann
  • Laurent Schaeffer
  • Graça Raposo
  • Didier ViletteEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1545)


Extracellular vesicles (EVs) are composed of microvesicles and exosomes. Exosomes are small membrane vesicles (40–120 nm sized) of endosomal origin released in the extracellular medium from cells when multivesicular bodies fuse with the plasma membrane, whereas microvesicles (i.e., shedding vesicles, 100 nm to 1 μm sized) bud from the plasma membrane. Exosomes and microvesicles carry functional proteins and nucleic acids (especially mRNAs and microRNAs) that can be transferred to surrounding cells and tissues and can impact multiple dimensions of the cellular life. Most of the cells, if not all, from neuronal to immune cells, release exosomes and microvesicles in the extracellular medium, and all biological fluids including blood (serum/plasma), urine, cerebrospinal fluid, and saliva contain EVs.

Prion-infected cultured cells are known to secrete infectivity into their environment. We characterized this cell-free form of prions and showed that infectivity was associated with exosomes. Since exosomes are produced by a variety of cells, including cells that actively accumulate prions, they could be a vehicle for infectivity in body fluids and could participate to the dissemination of prions in the organism. In addition, such infectious exosomes also represent a natural, simple, biological material to get key information on the abnormal PrP forms associated with infectivity.

In this chapter, we describe first a method that allows exosomes and microvesicles isolation from prion-infected cell cultures and in a second time the strategies to characterize the prions containing exosomes and their ability to disseminate the prion agent.

Key words

Extracellular vesicles Exosomes Microvesicles Prions PrPC PrPSc PrPRes Spreading 


  1. 1.
    Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3(1):28–37. doi: 10.1007/s13238-012-2003-z PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37(11):460–465, doi:S0968-0004(12)00115-6 [pii] 10.1016/j.tibs.2012.08.003PubMedCrossRefGoogle Scholar
  3. 3.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688. doi: 10.1007/s00018-011-0689-3 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668. doi: 10.1111/j.1600-0854.2011.01225.x PubMedCrossRefGoogle Scholar
  5. 5.
    Ludwig AK, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44(1):11–15. doi: 10.1016/j.biocel.2011.10.005, S1357-2725(11)00267-6 [pii]PubMedCrossRefGoogle Scholar
  6. 6.
    Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352(1):33–47. doi: 10.1007/s00441-012-1428-2 PubMedCrossRefGoogle Scholar
  7. 7.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51. doi: 10.1016/j.tcb.2008.11.003, S0962-8924(08)00283-3 [pii]PubMedCrossRefGoogle Scholar
  8. 8.
    Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885. doi: 10.1016/j.cub.2009.09.059, S0960-9822(09)01772-2 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q (2012) Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A 109(11):4146–4151. doi: 10.1073/pnas.1200448109, 1200448109 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. doi: 10.1083/jcb.201211138, jcb.201211138 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Buschow SI, Nolte-'t Hoen EN, van Niel G, Pols MS, ten Broeke T, Lauwen M, Ossendorp F, Melief CJ, Raposo G, Wubbolts R, Wauben MH, Stoorvogel W (2009) MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10(10):1528–1542. doi: 10.1111/j.1600-0854.2009.00963.x, TRA963 [pii]PubMedCrossRefGoogle Scholar
  12. 12.
    Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, Geuze HJ (2003) Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4(4):222–231, doi:072 [pii]PubMedCrossRefGoogle Scholar
  13. 13.
    White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE (2006) EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J 25(1):1–12. doi: 10.1038/sj.emboj.7600759, 7600759 [pii]PubMedCrossRefGoogle Scholar
  14. 14.
    Babst M (2005) A protein’s final ESCRT. Traffic 6(1):2–9. doi: 10.1111/j.1600-0854.2004.00246.x, TRA246 [pii]PubMedCrossRefGoogle Scholar
  15. 15.
    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Thery C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013:39p. doi: 10.1242/jcs.128868, jcs.128868 [pii]Google Scholar
  16. 16.
    Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91. doi: 10.1016/j.devcel.2011.05.015, S1534-5807(11)00207-3 [pii]PubMedCrossRefGoogle Scholar
  17. 17.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247, doi:319/5867/1244 [pii]  10.1126/science.1153124 PubMedCrossRefGoogle Scholar
  18. 18.
    Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, Lopez-Martin S, Ursa A, Sanchez-Madrid F, Vazquez J, Yanez-Mo M (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288(17):11649–11661. doi: 10.1074/jbc.M112.445304, M112.445304 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721. doi: 10.1016/j.devcel.2011.08.019, S1534-5807(11)00357-1 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C, Walsh TS, Chalmers RT, Webb DJ, Dear JW (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 10:5. doi: 10.1186/1479-5876-10-5, 1479-5876-10-5 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124(3-4):385–393. doi: 10.1016/j.vetimm.2008.04.002, S0165-2427(08)00165-7 [pii]PubMedCrossRefGoogle Scholar
  22. 22.
    Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179(3):1969–1978PubMedCrossRefGoogle Scholar
  23. 23.
    Lasser C, Alikhani VS, Ekstrom K, Eldh M, Paredes PT, Bossios A, Sjostrand M, Gabrielsson S, Lotvall J, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9. doi: 10.1186/1479-5876-9-9, 1479-5876-9-9 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16(1):34–38. doi: 10.1111/j.1601-0825.2009.01604.x, ODI1604 [pii]PubMedCrossRefGoogle Scholar
  25. 25.
    Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5(1), e8577. doi: 10.1371/journal.pone.0008577 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101(36):13368–13373. doi: 10.1073/pnas.0403453101, 0403453101 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA (2009) Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69(2):159–167. doi: 10.1002/pros.20860 PubMedCrossRefGoogle Scholar
  28. 28.
    Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, Scheynius A, Gabrielsson S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22(4):578–583PubMedCrossRefGoogle Scholar
  29. 29.
    Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360(9329):295–305. doi: 10.1016/S0140-6736(02)09552-1, S0140-6736(02)09552-1 [pii]PubMedCrossRefGoogle Scholar
  30. 30.
    Asea A, Jean-Pierre C, Kaur P, Rao P, Linhares IM, Skupski D, Witkin SS (2008) Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol 79(1):12–17. doi: 10.1016/j.jri.2008.06.001, S0165-0378(08)00069-7 [pii]PubMedCrossRefGoogle Scholar
  31. 31.
    Lasser C, O'Neil SE, Ekerljung L, Ekstrom K, Sjostrand M, Lotvall J (2011) RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy 25(2):89–93. doi: 10.2500/ajra.2011.25.3573, 3573 [pii]PubMedCrossRefGoogle Scholar
  32. 32.
    Masyuk AI, Huang BQ, Ward CJ, Gradilone SA, Banales JM, Masyuk TV, Radtke B, Splinter PL, LaRusso NF (2010) Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 299(4):G990–G999. doi: 10.1152/ajpgi.00093.2010, ajpgi.00093.2010 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887. doi: 10.1093/intimm/dxh267, dxh267 [pii]PubMedCrossRefGoogle Scholar
  34. 34.
    Harding C, Heuser J, Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35(2):256–263PubMedGoogle Scholar
  35. 35.
    Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948PubMedCrossRefGoogle Scholar
  36. 36.
    Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F100 Biol Rep 3:15. doi: 10.3410/B3-15 Google Scholar
  37. 37.
    Simons M, Raposo G (2009) Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581. doi: 10.1016/, S0955-0674(09)00077-5 [pii]PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10(5):619–624. doi: 10.1038/ncb1725, ncb1725 [pii]PubMedCrossRefGoogle Scholar
  39. 39.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856. doi: 10.1038/sj.leu.2404132, 2404132 [pii]PubMedCrossRefGoogle Scholar
  40. 40.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495. doi: 10.1038/sj.leu.2404296, 2404296 [pii]PubMedCrossRefGoogle Scholar
  41. 41.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476. doi: 10.1038/ncb1800, ncb1800 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. doi: 10.1038/ncb1596, ncb1596 [pii]PubMedCrossRefGoogle Scholar
  43. 43.
    Ridder K, Keller S, Dams M, Rupp AK, Schlaudraff J, Del Turco D, Starmann J, Macas J, Karpova D, Devraj K, Depboylu C, Landfried B, Arnold B, Plate KH, Hoglinger G, Sultmann H, Altevogt P, Momma S (2014) Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12(6), e1001874. doi: 10.1371/journal.pbio.1001874, PBIOLOGY-D-14-00669 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Soto C (2011) Prion hypothesis: the end of the controversy? Trends Biochem Sci 36(3):151–158. doi: 10.1016/j.tibs.2010.11.001, S0968-0004(10)00210-0 [pii]PubMedCrossRefGoogle Scholar
  46. 46.
    Aguzzi A, Heikenwalder M (2006) Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4(10):765–775. doi: 10.1038/nrmicro1492, nrmicro1492 [pii]PubMedCrossRefGoogle Scholar
  47. 47.
    Castro-Seoane R, Hummerich H, Sweeting T, Tattum MH, Linehan JM, Fernandez de Marco M, Brandner S, Collinge J, Klohn PC (2012) Plasmacytoid dendritic cells sequester high prion titres at early stages of prion infection. PLoS Pathog 8(2), e1002538. doi: 10.1371/journal.ppat.1002538, PPATHOGENS-D-11-00640 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Klohn PC, Castro-Seoane R, Collinge J (2013) Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 67(5):359–368. doi: 10.1016/j.jinf.2013.07.024, S0163-4453(13)00211-9 [pii]PubMedCrossRefGoogle Scholar
  49. 49.
    Kujala P, Raymond CR, Romeijn M, Godsave SF, van Kasteren SI, Wille H, Prusiner SB, Mabbott NA, Peters PJ (2011) Prion uptake in the gut: identification of the first uptake and replication sites. PLoS Pathog 7(12), e1002449. doi: 10.1371/journal.ppat.1002449, PPATHOGENS-D-11-01207 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kanu N, Imokawa Y, Drechsel DN, Williamson RA, Birkett CR, Bostock CJ, Brockes JP (2002) Transfer of scrapie prion infectivity by cell contact in culture. Curr Biol 12(7):523–530, doi:S0960982202007224 [pii]PubMedCrossRefGoogle Scholar
  51. 51.
    Paquet S, Langevin C, Chapuis J, Jackson GS, Laude H, Vilette D (2007) Efficient dissemination of prions through preferential transmission to nearby cells. J Gen Virol 88(Pt 2):706–713. doi: 10.1099/vir.0.82336-0
  52. 52.
    Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi: 10.1038/ncb1841, ncb1841 [pii]PubMedCrossRefGoogle Scholar
  53. 53.
    Schatzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI, Mobley WC, Prusiner SB (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71(11):8821–8831PubMedPubMedCentralGoogle Scholar
  54. 54.
    Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615. doi: 10.1042/BC20080025, BC20080025 [pii]PubMedCrossRefGoogle Scholar
  55. 55.
    Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101(26):9683–9688. doi: 10.1073/pnas.0308413101, 0308413101 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25(12):2674–2685. doi: 10.1038/sj.emboj.7601162, 7601162 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M, Raposo G, Andreoletti O, Vilette D (2015) Prion strains are differentially released through the exosomal pathway. Cell Mol Life Sci 72(6):1185–1196. doi: 10.1007/s00018-014-1735-8 PubMedCrossRefGoogle Scholar
  58. 58.
    Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40(21):10937–10949. doi: 10.1093/nar/gks832, gks832 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Coleman BM, Hanssen E, Lawson VA, Hill AF (2012) Prion-infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J 26(10):4160–4173. doi: 10.1096/fj.11-202077, fj.11-202077 [pii]PubMedCrossRefGoogle Scholar
  60. 60.
    Conde-Vancells J, Rodriguez-Suarez E, Gonzalez E, Berisa A, Gil D, Embade N, Valle M, Luka Z, Elortza F, Wagner C, Lu SC, Mato JM, Falcon-Perez M (2010) Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteomics Clin Appl 4(4):416–425. doi: 10.1002/prca.200900103 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648. doi: 10.1016/j.mcn.2005.12.003, S1044-7431(05)00302-7 [pii]PubMedCrossRefGoogle Scholar
  62. 62.
    Ritchie AJ, Crawford DM, Ferguson DJ, Burthem J, Roberts DJ (2013) Normal prion protein is expressed on exosomes isolated from human plasma. Br J Haematol 163(5):678–680. doi: 10.1111/bjh.12543 PubMedCrossRefGoogle Scholar
  63. 63.
    Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107(10):3907–3911. doi: 10.1182/blood-2005-02-0802, 2005-02-0802 [pii]PubMedCrossRefGoogle Scholar
  64. 64.
    Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5):582–590. doi: 10.1002/path.2145 PubMedCrossRefGoogle Scholar
  65. 65.
    Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332. doi: 10.1007/s00249-007-0246-z PubMedCrossRefGoogle Scholar
  66. 66.
    Wang G, Zhou X, Bai Y, Zhang Z, Zhao D (2010) Cellular prion protein released on exosomes from macrophages binds to Hsp70. Acta Biochim Biophys Sin (Shanghai) 42(5):345–350CrossRefGoogle Scholar
  67. 67.
    Wang GH, Zhou XM, Bai Y, Yin XM, Yang LF, Zhao D (2011) Hsp70 binds to PrPC in the process of PrPC release via exosomes from THP-1 monocytes. Cell Biol Int 35(6):553–558. doi: 10.1042/CBI20090391, CBI20090391 [pii]PubMedCrossRefGoogle Scholar
  68. 68.
    Guo BB, Bellingham SA, Hill AF (2015) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 290(6):3455–3467. doi: 10.1074/jbc.M114.605253, M114.605253 [pii]PubMedCrossRefGoogle Scholar
  69. 69.
    Vilette D, Laulagnier K, Huor A, Alais S, Simoes S, Maryse R, Provansal M, Lehmann S, Andreoletti O, Schaeffer L, Raposo G, Leblanc P (2015) Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway. Cell Mol Life Sci 72(22):4409–4427. doi: 10.1007/s00018-015-1945-8,  10.1007/s00018-015-1945-8 PubMedCrossRefGoogle Scholar
  70. 70.
    Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128(7):1434–1443. doi: 10.1242/jcs.165472, jcs.165472 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mattei V, Barenco MG, Tasciotti V, Garofalo T, Longo A, Boller K, Lower J, Misasi R, Montrasio F, Sorice M (2009) Paracrine diffusion of PrP(C) and propagation of prion infectivity by plasma membrane-derived microvesicles. PLoS One 4(4), e5057. doi: 10.1371/journal.pone.0005057 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Chen B, Morales R, Barria MA, Soto C (2010) Estimating prion concentration in fluids and tissues by quantitative PMCA. Nat Methods 7(7):519–520. doi: 10.1038/nmeth.1465, nmeth.1465 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Henderson DM, Davenport KA, Haley NJ, Denkers ND, Mathiason CK, Hoover EA (2015) Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J Gen Virol 96(Pt 1):210–219. doi: 10.1099/vir.0.069906-0, vir.0.069906-0 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lacroux C, Simon S, Benestad SL, Maillet S, Mathey J, Lugan S, Corbiere F, Cassard H, Costes P, Bergonier D, Weisbecker JL, Moldal T, Simmons H, Lantier F, Feraudet-Tarisse C, Morel N, Schelcher F, Grassi J, Andreoletti O (2008) Prions in milk from ewes incubating natural scrapie. PLoS Pathog 4(12), e1000238. doi: 10.1371/journal.ppat.1000238 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mathiason CK, Powers JG, Dahmes SJ, Osborn DA, Miller KV, Warren RJ, Mason GL, Hays SA, Hayes-Klug J, Seelig DM, Wild MA, Wolfe LL, Spraker TR, Miller MW, Sigurdson CJ, Telling GC, Hoover EA (2006) Infectious prions in the saliva and blood of deer with chronic wasting disease. Science 314(5796):133–136, doi:314/5796/133 [pii]  10.1126/science.1132661 PubMedCrossRefGoogle Scholar
  76. 76.
    Moda F, Gambetti P, Notari S, Concha-Marambio L, Catania M, Park KW, Maderna E, Suardi S, Haik S, Brandel JP, Ironside J, Knight R, Tagliavini F, Soto C (2014) Prions in the urine of patients with variant Creutzfeldt-Jakob disease. N Engl J Med 371(6):530–539. doi: 10.1056/NEJMoa1404401 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Murayama Y, Masujin K, Imamura M, Ono F, Shibata H, Tobiume M, Yamamura T, Shimozaki N, Terao K, Yamakawa Y, Sata T (2014) Ultrasensitive detection of PrP(Sc) in the cerebrospinal fluid and blood of macaques infected with bovine spongiform encephalopathy prion. J Gen Virol 95(Pt 11):2576–2588. doi: 10.1099/vir.0.066225-0, vir.0.066225-0 [pii]PubMedCrossRefGoogle Scholar
  78. 78.
    Notari S, Qing L, Pocchiari M, Dagdanova A, Hatcher K, Dogterom A, Groisman JF, Lumholtz IB, Puopolo M, Lasmezas C, Chen SG, Kong Q, Gambetti P (2012) Assessing prion infectivity of human urine in sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis 18(1):21–28. doi: 10.3201/eid1801.110589 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Orru CD, Groveman BR, Hughson AG, Zanusso G, Coulthart MB, Caughey B (2015) Rapid and sensitive RT-QuIC detection of human Creutzfeldt-Jakob disease using cerebrospinal fluid. MBio 6(1):pii e02451-14. doi: 10.1128/mBio.02451-14 CrossRefGoogle Scholar
  80. 80.
    Andreoletti O, Litaise C, Simmons H, Corbiere F, Lugan S, Costes P, Schelcher F, Vilette D, Grassi J, Lacroux C (2012) Highly efficient prion transmission by blood transfusion. PLoS Pathog 8(6), e1002782. doi: 10.1371/journal.ppat.1002782, PPATHOGENS-D-11-02296 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Brown P, Rohwer RG, Dunstan BC, MacAuley C, Gajdusek DC, Drohan WN (1998) The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion 38(9):810–816PubMedCrossRefGoogle Scholar
  82. 82.
    Gregori L, Kovacs GG, Alexeeva I, Budka H, Rohwer RG (2008) Excretion of transmissible spongiform encephalopathy infectivity in urine. Emerg Infect Dis 14(9):1406–1412. doi: 10.3201/eid1409.080259 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Haley NJ, Seelig DM, Zabel MD, Telling GC, Hoover EA (2009) Detection of CWD prions in urine and saliva of deer by transgenic mouse bioassay. PLoS One 4(3), e4848. doi: 10.1371/journal.pone.0004848 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Houston F, Foster JD, Chong A, Hunter N, Bostock CJ (2000) Transmission of BSE by blood transfusion in sheep. Lancet 356(9234):999–1000, doi:S0140673600027197 [pii]PubMedCrossRefGoogle Scholar
  85. 85.
    Kariv-Inbal Z, Ben-Hur T, Grigoriadis NC, Engelstein R, Gabizon R (2006) Urine from scrapie-infected hamsters comprises low levels of prion infectivity. Neurodegener Dis 3(3):123–128. doi: 10.1159/000094770, 94770 [pii]PubMedCrossRefGoogle Scholar
  86. 86.
    Ligios C, Cancedda MG, Carta A, Santucciu C, Maestrale C, Demontis F, Saba M, Patta C, DeMartini JC, Aguzzi A, Sigurdson CJ (2011) Sheep with scrapie and mastitis transmit infectious prions through the milk. J Virol 85(2):1136–1139. doi: 10.1128/JVI.02022-10, JVI.02022-10 [pii]PubMedCrossRefGoogle Scholar
  87. 87.
    Wroe SJ, Pal S, Siddique D, Hyare H, Macfarlane R, Joiner S, Linehan JM, Brandner S, Wadsworth JD, Hewitt P, Collinge J (2006) Clinical presentation and pre-mortem diagnosis of variant Creutzfeldt-Jakob disease associated with blood transfusion: a case report. Lancet 368(9552):2061–2067. doi: 10.1016/S0140-6736(06)69835-8, S0140-6736(06)69835-8 [pii]PubMedCrossRefGoogle Scholar
  88. 88.
    Cervenakova L, Yakovleva O, McKenzie C, Kolchinsky S, McShane L, Drohan WN, Brown P (2003) Similar levels of infectivity in the blood of mice infected with human-derived vCJD and GSS strains of transmissible spongiform encephalopathy. Transfusion 43(12):1687–1694, doi:586 [pii]PubMedCrossRefGoogle Scholar
  89. 89.
    Properzi F, Logozzi M, Abdel-Haq H, Federici C, Lugini L, Azzarito T, Cristofaro I, di Sevo D, Ferroni E, Cardone F, Venditti M, Colone M, Comoy E, Durand V, Fais S, Pocchiari M (2015) Detection of exosomal prions in blood by immunochemistry techniques. J Gen Virol 96(Pt 7):1969–1974. doi: 10.1099/vir.0.000117, vir.0.000117 [pii]PubMedCrossRefGoogle Scholar
  90. 90.
    Saa P, Yakovleva O, de Castro J, Vasilyeva I, De Paoli SH, Simak J, Cervenakova L (2014) First demonstration of transmissible spongiform encephalopathy-associated prion protein (PrPTSE) in extracellular vesicles from plasma of mice infected with mouse-adapted variant Creutzfeldt-Jakob disease by in vitro amplification. J Biol Chem 289(42):29247–29260. doi: 10.1074/jbc.M114.589564, M114.589564 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307. doi: 10.1038/nrm2873, nrm2873 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. doi: 10.1038/nature12481, nature12481 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Renner M, Melki R (2014) Protein aggregation and prionopathies. Pathol Biol (Paris) 62(3):162–168. doi: 10.1016/j.patbio.2014.01.003, S0369-8114(14)00033-9 [pii]CrossRefGoogle Scholar
  94. 94.
    Bendor JT, Logan TP, Edwards RH (2013) The function of alpha-synuclein. Neuron 79(6):1044–1066. doi: 10.1016/j.neuron.2013.09.004, S0896-6273(13)00802-7 [pii]PubMedCrossRefGoogle Scholar
  95. 95.
    Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79(3):416–438. doi: 10.1016/j.neuron.2013.07.033, S0896-6273(13)00657-0 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Mallucci G (2013) Spreading proteins in neurodegeneration: where do they take us? Brain 136(Pt 4):994–995. doi: 10.1093/brain/awt072, awt072 [pii]PubMedCrossRefGoogle Scholar
  97. 97.
    Mohamed NV, Herrou T, Plouffe V, Piperno N, Leclerc N (2013) Spreading of tau pathology in Alzheimer’s disease by cell-to-cell transmission. Eur J Neurosci 37(12):1939–1948. doi: 10.1111/ejn.12229 PubMedCrossRefGoogle Scholar
  98. 98.
    Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H, Hasegawa M (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4(1):124–134. doi: 10.1016/j.celrep.2013.06.007, S2211-1247(13)00285-4 [pii]PubMedCrossRefGoogle Scholar
  99. 99.
    Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Abeta prions from Alzheimer's disease patients. Proc Natl Acad Sci U S A 111(28):10323–10328. doi: 10.1073/pnas.1408900111, 1408900111 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, Dearmond SJ, Prusiner SB (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110(48):19555–19560. doi: 10.1073/pnas.1318268110, 1318268110 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, Geschwind DH, Glidden DV, Halliday GM, Middleton LT, Gentleman SM, Grinberg LT, Giles K (2015) Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 112(38):E5308–E5317. doi: 10.1073/pnas.1514475112, 1514475112 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Basso M, Pozzi S, Tortarolo M, Fiordaliso F, Bisighini C, Pasetto L, Spaltro G, Lidonnici D, Gensano F, Battaglia E, Bendotti C, Bonetto V (2013) Mutant copper-zinc superoxide dismutase (SOD1) induces protein secretion pathway alterations and exosome release in astrocytes: implications for disease spreading and motor neuron pathology in amyotrophic lateral sclerosis. J Biol Chem 288(22):15699–15711. doi: 10.1074/jbc.M112.425066, M112.425066 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. doi: 10.1186/1750-1326-7-42, 1750-1326-7-42 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ding X, Ma M, Teng J, Teng RK, Zhou S, Yin J, Fonkem E, Huang JH, Wu E, Wang X (2015) Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6(27):24178–24191, doi:4680 [pii] 10.18632/oncotarget.4680PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851, doi:30/20/6838 [pii]  10.1523/JNEUROSCI.5699-09.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, Li D, Thal DR, Walther P, Ludolph AC, Danzer KM, Weishaupt JH (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211(4):897–911. doi: 10.1083/jcb.201504057, jcb.201504057 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Gomes C, Keller S, Altevogt P, Costa J (2007) Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci Lett 428(1):43–46. doi: 10.1016/j.neulet.2007.09.024, S0304-3940(07)01005-1 [pii]PubMedCrossRefGoogle Scholar
  108. 108.
    Kunadt M, Eckermann K, Stuendl A, Gong J, Russo B, Strauss K, Rai S, Kugler S, Falomir Lockhart L, Schwalbe M, Krumova P, Oliveira LM, Bahr M, Mobius W, Levin J, Giese A, Kruse N, Mollenhauer B, Geiss-Friedlander R, Ludolph AC, Freischmidt A, Feiler MS, Danzer KM, Zweckstetter M, Jovin TM, Simons M, Weishaupt JH, Schneider A (2015) Extracellular vesicle sorting of alpha-Synuclein is regulated by sumoylation. Acta Neuropathol 129(5):695–713. doi: 10.1007/s00401-015-1408-1 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103(30):11172–11177. doi: 10.1073/pnas.0603838103, 0603838103 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3:22. doi: 10.1002/0471143030.cb0322s30 PubMedGoogle Scholar
  111. 111.
    Vilette D (2008) Cell models of prion infection. Vet Res 39(4):10. doi: 10.1051/vetres:2007049, v08023 [pii]PubMedCrossRefGoogle Scholar
  112. 112.
    Bosque PJ, Prusiner SB (2000) Cultured cell sublines highly susceptible to prion infection. J Virol 74(9):4377–4386PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, Hsiao KK, Kingsbury DT, Prusiner SB (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62(5):1558–1564PubMedPubMedCentralGoogle Scholar
  114. 114.
    Nishida N, Harris DA, Vilette D, Laude H, Frobert Y, Grassi J, Casanova D, Milhavet O, Lehmann S (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74(1):320–325PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Vorberg I, Raines A, Story B, Priola SA (2004) Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J Infect Dis 189(3):431–439. doi: 10.1086/381166, JID31043 [pii]PubMedCrossRefGoogle Scholar
  116. 116.
    Arjona A, Simarro L, Islinger F, Nishida N, Manuelidis L (2004) Two Creutzfeldt-Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci U S A 101(23):8768–8773. doi: 10.1073/pnas.0400158101, 0400158101 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C, Le Dur A, Vilette D, Baron-Van Evercooren A, Vilotte JL, Laude H (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78(1):482–490PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, Laude H (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98(7):4055–4059. doi: 10.1073/pnas.061337998, 061337998 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Vella LJ, Hill AF (2008) Generation of cell lines propagating infectious prions and the isolation and characterization of cell-derived exosomes. Methods Mol Biol 459:69–82. doi: 10.1007/978-1-59745-234-2_5 PubMedCrossRefGoogle Scholar
  120. 120.
    Taraboulos A, Serban D, Prusiner SB (1990) Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J Cell Biol 110(6):2117–2132PubMedCrossRefGoogle Scholar
  121. 121.
    Sajnani G, Silva CJ, Ramos A, Pastrana MA, Onisko BC, Erickson ML, Antaki EM, Dynin I, Vazquez-Fernandez E, Sigurdson CJ, Carter JM, Requena JR (2012) PK-sensitive PrP is infectious and shares basic structural features with PK-resistant PrP. PLoS Pathog 8(3), e1002547. doi: 10.1371/journal.ppat.1002547, PPATHOGENS-D-11-01621 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Arellano-Anaya ZE, Savistchenko J, Mathey J, Huor A, Lacroux C, Andreoletti O, Vilette D (2011) A simple, versatile and sensitive cell-based assay for prions from various species. PLoS One 6(5), e20563. doi: 10.1371/journal.pone.0020563, PONE-D-11-05514 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci U S A 100(20):11666–11671. doi: 10.1073/pnas.1834432100, 1834432100 [pii]PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Pascal Leblanc
    • 1
    • 2
    Email author
  • Zaira E. Arellano-Anaya
    • 3
  • Emilien Bernard
    • 4
  • Laure Gallay
    • 1
    • 2
  • Monique Provansal
    • 5
  • Sylvain Lehmann
    • 5
  • Laurent Schaeffer
    • 1
    • 2
  • Graça Raposo
    • 6
  • Didier Vilette
    • 3
    Email author
  1. 1.CNRS UMR5239, LBMCEcole Normale Supérieure de LyonLyonFrance
  2. 2.Institut NeuroMyoGène (INMG), CNRS UMR5310 – INSERM U1217Université de Lyon – Université Claude BernardLyonFrance
  3. 3.IHAPUniversité de Toulouse, INRA, ENVTToulouseFrance
  4. 4.Hôpital Neurologique Pierre WertheimerBron-LyonFrance
  5. 5.IRBHôpital St EloiMontpellierFrance
  6. 6.CNRS UMR144Institut CurieParisFrance

Personalised recommendations