Skip to main content

Split-Brain Human Subjects

  • Protocol
  • First Online:
Lateralized Brain Functions

Part of the book series: Neuromethods ((NM,volume 122))

Abstract

This chapter reviews the neuropsychological and imaging studies, carried out by the author’s group and coworkers on split-brain patients in the past 19 years, to investigate the role of the human corpus callosum in the interhemispheric transfer and integration of information. These studies will provide evidence of how the research on split-brain patients may provide a significant contribution to the understanding of lateralized and diffuse brain functions. In particular, by comparing results from total and partial callosotomized patients and with control subjects, many findings have been obtained on the organization and functions of human brain. The studies will be described in a brief overview of other groups’ research on similar patients.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6725-4_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Anterior parietal cortex

BOLD:

Blood oxygenation level dependent

CC:

Corpus callosum

Cin:

Cingulated cortex

CS:

Central sulcus

CT:

Computerized tomography

CUD:

Crossed uncrossed difference

DTI:

Diffusion tensor imaging

fMRI:

Functional magnetic resonance imaging

IT:

Interhemispheric transfer

GAD:

Glutamic acid decarboxylase

LVF:

Left visual field

MEG:

Magnetoencephalography

MRI:

Magnetic resonance imaging

PCB:

Posterior callosal body

PCG:

Postcentral gyrus

PCS:

Postcentral sulcus

PET:

Positron emission tomography

PO:

Parietal operculum

PP:

Poffenberger paradigm

PPC:

Posterior parietal cortex

RF:

Receptive field

RHH:

Right hemisphere hypothesis

ROI:

Region of interest

RT:

Reaction time

RTE:

Redundant target effect

RVF:

Right visual field

SC:

Superior colliculus

S-DRT:

Same-different recognition test

SI:

Primary somatic sensory area

SII:

Secondary somatic sensory area

SS:

Sylvian sulcus

TFLT:

Tactile finger localization test

TNT:

Tactile naming test

TPJ:

Temporal parietal junction

VF:

Visual field

VH:

Valence hypothesis

References

  1. Amaral DG (2000) The anatomical organization of the central nervous system. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 317–336

    Google Scholar 

  2. Rogers LJ, Vallortigara G, Andrew RJ (2013) Evolution. In: Rogers LJ, Vallortigara G, Andrew RJ (eds) Divided brains: the biology and behavior of brain asymmetries (Chapter 3). Cambridge University Press, New York, pp 62–97

    Chapter  Google Scholar 

  3. Kaas JH, Jain N, Qi H-X (2002) The organization of somatosensory system in primates. In: Nelson R (ed) The somatosensory system: deciphering the brain’s own body image. CRC, Boca Raton, FL, pp 1–25

    Google Scholar 

  4. Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123:1293–1326

    Article  PubMed  Google Scholar 

  5. Funnell MG, Corballis PM, Gazzaniga MS (2000) Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Arch Neurol 57:185–189

    Article  CAS  PubMed  Google Scholar 

  6. Fabri M, Del Pesce M, Paggi A, Polonara G, Bartolini M, Salvolini U, Manzoni T (2005) Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. Cogn Brain Res 24:73–80

    Article  Google Scholar 

  7. Fabri M, Polonara G, Mascioli G, Salvolini U, Manzoni T (2011) Topographical organization of human corpus callosum: an fMRI mapping study. Brain Res 1370:99–111

    Article  CAS  PubMed  Google Scholar 

  8. Sperry RW (1974) Lateral specialization in the surgically separated hemispheres. In: Schmitt F, Worden F (eds) Neurosciences third study program. MIT Press, Cambridge, MA, pp 1–12

    Google Scholar 

  9. Zaidel E, Iacoboni M, Berman SM, Zaidel DW, Bogen JE (2011) Callosal syndromes. In: Heilman KM, Valenstein E (eds) Clinical neuropsychology. Oxford University Press, Oxford, pp 349–416

    Google Scholar 

  10. Fabri M, Pierpaoli C, Barbaresi P, Polonara G (2014) Functional topography of the corpus callosum investigated by DTI and fMRI. World J Radiol 6:895–906

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gazzaniga MS (2005) Forty-five years of split-brain research and still going strong. Nat Rev Neurosci 6:653–659

    Article  CAS  PubMed  Google Scholar 

  12. Fabri M, Polonara G, Quattrini A, Salvolini U, Del Pesce M, Manzoni T (1999) Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 11:3983–3994

    Article  CAS  PubMed  Google Scholar 

  13. Fabri M, Polonara G, Del Pesce M, Quattrini A, Salvolini U, Manzoni T (2001) Posterior corpus callosum and interhemispheric transfer of somatosensory information: an fMRI and neuropsychological study of a partially callosotomized patient. J Cogn Neurosci 13:1071–1079

    Article  CAS  PubMed  Google Scholar 

  14. Westerhausen R, Hugdahl K (2008) The corpus callosum in dichotic listening studies of hemispheric asymmetry: a review of clinical and experimental evidence. Neurosci Biobehav Rev 32:1044–1054

    Article  PubMed  Google Scholar 

  15. Marzi CA (1999) The Poffenberger paradigm: a first, simple, behavioural tool to study interhemispheric transmission in humans. Brain Res Bull 50:421–422

    Article  CAS  PubMed  Google Scholar 

  16. Zaidel E, Iacoboni M (2003) Introduction: Poffenberger’s simple reaction time paradigm for measuring interhemispheric transfer time. In: Zaidel E, Iacoboni M (eds) The parallel brain. The cognitive neuroscience of the corpus callosum. MIT Press, Cambridge, MA, pp 1–7

    Google Scholar 

  17. Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologia 29:1163–1177

    Article  CAS  PubMed  Google Scholar 

  18. Lassonde MC, Sauerwein HC, Lepore F (2003) Agenesis of the corpus callosum. In: Zaidel E, Iacoboni M (eds) The parallel brain. The cognitive neuroscience of the corpus callosum. The MIT Press, Cambridge, MA, pp 357–369

    Google Scholar 

  19. Omura K, Tsukamoto T, Kotani Y, Ohgami Y, Minami M, Inoue Y (2004) Different mechanisms involved in interhemispheric transfer of visuomotor information. NeuroReport 15:2707–2711

    Article  PubMed  Google Scholar 

  20. Tettamanti M, Paulesu E, Scifo P, Maravita A, Fazio F, Perani D, Marzi CA (2002) Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J Neurophysiol 88:1051–1058

    CAS  PubMed  Google Scholar 

  21. Weber B, Treyer V, Oberholzer N, Jaermann T, Boesiger P, Brugger P, Regard M, Buck A, Savazzi S, Marzi CA (2005) Attention and interhemispheric transfer: a behavioural and fMRI study. J Cogn Neurosci 17:113–123

    Article  CAS  PubMed  Google Scholar 

  22. Papo I, Quattrini A, Ortenzi A, Paggi A, Rychlicki F, Provinciali L, Del Pesce M, Cesarano C, Fioravanti P (1997) Predictive factors of callosotomy in drug-resistant epileptic patients with a long follow-up. J Neurosurg Sci 41:31–36

    CAS  PubMed  Google Scholar 

  23. Quattrini A, Papo I, Paggi A, Ortensi A, Rychlicki F, Fronzoni M, Recchioni MA, Marchioro R, Pauri GL, Bonaparte A, Mancini S (1989) Anterior callosotomy in drug-resistant epilepsy. Adv Epileptol 17:4245

    Google Scholar 

  24. Quattrini A, Papo I, Cesarano R, Fioravanti P, Paggi A, Ortensi A, Foschi N, Rychlicky F, Del Pesce M, Pistoli E, Marinelli M (1997) EEG patterns after callosotomy. J Neurosurg Sci 41:85–92

    CAS  PubMed  Google Scholar 

  25. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  26. Làdavas E, Cimatti D, Del Pesce M, Tuozzi G (1993) Emotional evaluation with and without conscious stimulus identification: evidence from a split-brain patient. Cognit Emot 7:95–114

    Article  Google Scholar 

  27. De Guise E, Del Pesce M, Foschi N, Quattrini A, Papo I, Lassonde M (1999) Callosal and cortical contribution to procedural learning. Brain 122:1049–1062

    Article  PubMed  Google Scholar 

  28. Arguin M, Lassonde M, Quattrini A, Del Pesce M, Foschi N, Papo I (2000) Divided visuo-spatial attention systems with total and anterior callosotomy. Neuropsychologia 38:283–291

    Article  CAS  PubMed  Google Scholar 

  29. Aglioti SM, Tassinari G, Fabri M, Del Pesce M, Quattrini A, Manzoni T, Berlucchi G (2001) Taste laterality in the split brain. Eur J Neurosci 13:195–200

    Article  CAS  PubMed  Google Scholar 

  30. Fabri M, Polonara G, Quattrini A, Salvolini U (2002) Mechanical noxious stimuli cause bilateral activation of parietal operculum in callosotomized subjects. Cereb Cortex 1:446–451

    Article  Google Scholar 

  31. Corballis MC, Corballis PM, Fabri M (2004) Redundancy gain in simple reaction time following partial and complete callosotomy. Neuropsychologia 42:71–81

    Article  PubMed  Google Scholar 

  32. Hausmann M, Corballis MC, Fabri M (2003) Line bisection in the split brain. Neuropsychology 17:602–609

    Article  PubMed  Google Scholar 

  33. Savazzi S, Marzi CA (2004) The superior colliculus subserves interhemispheric neural summation in both normals and patients with a total section or agenesis of the corpus callosum. Neuropsychologia 42:1608–1618

    Article  PubMed  Google Scholar 

  34. Corballis MC, Barnett KJ, Fabri M, Paggi A, Corballis PM (2004) Hemispheric integration and differences in perception of a line-motion illusion in the divided brain. Neuropsychologia 42:1852–1857

    Article  PubMed  Google Scholar 

  35. Corballis MC, Corballis PM, Fabri M, Paggi A, Manzoni T (2005) Now you see it, now you don’t: variable hemineglect in a commissurotomized man. Brain Res Cogn Brain Res 25:521–530

    Article  PubMed  Google Scholar 

  36. Hausmann M, Corballis MC, Fabri M, Paggi A, Lewald J (2005) Sound lateralization in subjects with callosotomy, callosal agenesis, or hemispherectomy. Brain Res Cogn Brain Res 25:537–546

    Article  PubMed  Google Scholar 

  37. Fabri M, Polonara G, Mascioli G, Paggi A, Salvolini U, Manzoni T (2006) Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: a fMRI study of callosotomized patients. Eur J Neurosci 23:3139–3148

    Article  CAS  PubMed  Google Scholar 

  38. Savazzi S, Fabri M, Rubboli G, Paggi A, Tassinari CA, Marzi CA (2007) Interhemispheric transfer following callosotomy in humans: role of the superior colliculus. Neuropsychologia 45:2417–2427

    Article  PubMed  Google Scholar 

  39. Ouimet C, Jolicoeur P, Miller J, Ptito A, Paggi A, Foschi N, Ortenzi A, Lassonde M (2009) Sensory and motor involvement in the enhanced redundant target effect: a study comparing anterior- and totally split-brain individuals. Neuropsychologia 47:684–692

    Article  PubMed  Google Scholar 

  40. Ouimet C, Jolicoeur P, Lassonde M, Ptito A, Paggi A, Foschi N, Ortenzi A, Miller J (2010) Bimanual crossed-uncrossed difference and asynchrony of normal, anterior- and totally-split-brain individuals. Neuropsychologia 48:3802–3814

    Article  PubMed  Google Scholar 

  41. Pizzini FB, Polonara G, Mascioli G, Beltramello A, Foroni R, Paggi A, Salvolini U, Tassinari G, Fabri M (2010) Diffusion tensor tracking of callosal fibers several years after callosotomy. Brain Res 1312:10–71

    Article  CAS  PubMed  Google Scholar 

  42. Corballis MC, Birse K, Paggi A, Manzoni T, Pierpaoli C, Fabri M (2010) Mirror-image discrimination and reversal in the disconnected hemispheres. Neuropsychologia 48:1664–1669

    Article  PubMed  Google Scholar 

  43. Miller MB, Sinnott-Armstrong W, Young L, King D, Paggi A, Fabri M, Polonara G, Gazzaniga MS (2010) Abnormal moral reasoning in complete and partial callosotomy patients. Neuropsychologia 48:2215–2220

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fabri M, Polonara G (2013) Functional topography of human corpus callosum: an fMRI mapping study. Neural Plast 2013:251308. doi:10.1155/2013/251308, 15p

  45. Polonara G, Mascioli G, Foschi N, Salvolini U, Pierpaoli C, Manzoni T, Fabri M, Barbaresi P (2014) Further evidence for the topography and connectivity of the corpus callosum: an FMRI study of patients with partial callosal resection. J Neuroimaging 25:465–473

    Article  PubMed  Google Scholar 

  46. Prete G, D'Ascenzo S, Laeng B, Fabri M, Foschi N, Tommasi L (2015) Conscious and unconscious processing of facial expressions: evidence from two split-brain patients. J Neuropsychol 9:45–63

    Article  PubMed  Google Scholar 

  47. Prete G, Marzoli D, Brancucci A, Fabri M, Foschi N, Tommasi L (2014) The processing of chimeric and dichotic emotional stimuli by connected and disconnected cerebral hemispheres. Behav Brain Res 271:354–364

    Article  PubMed  Google Scholar 

  48. Prete G, Fabri M, Foschi N, Brancucci A, Tommasi L (2015) The “consonance effect” and the hemispheres: a study on a split-brain patient. Laterality 20:257–269

    Article  PubMed  Google Scholar 

  49. Prete G, Laeng B, Fabri M, Foschi N, Tommasi L (2015) Right hemisphere or valence hypothesis, or both? The processing of hybrid faces in the intact and callosotomized brain. Neuropsychologia 68:94–106

    Article  PubMed  Google Scholar 

  50. Manzoni T, Barbaresi P, Conti F, Fabri M (1989) The callosal connections of the primary somatosensory cortex and the neural bases of midline fusion. Exp Brain Res 76:251–266

    Article  CAS  PubMed  Google Scholar 

  51. Manzoni T (1997) The callosal connections of the hierarchically organized somatosensory areas of primates. J Neurosurg Sci 41:1–22

    Article  CAS  PubMed  Google Scholar 

  52. Polonara G, Fabri M, Manzoni T, Salvolini U (1999) Localization of the first (SI) and second (SII) somatic sensory areas in human cerebral cortex with fMRI. Am J NeuroRadiol 20:199–205

    CAS  PubMed  Google Scholar 

  53. Garcha HS, Ettlinger G (1980) Tactile discrimination learning in the monkey: the effects of unilateral or bilateral removals of the second somatosensory cortex (area SII). Cortex 16:397–412

    Article  CAS  PubMed  Google Scholar 

  54. Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B 354:1145–1154

    Article  CAS  Google Scholar 

  55. Fabri M, Polonara G, Salvolini U, Manzoni T (2005) Bilateral cortical representation of the trunk midline in human first somatic sensory area. Hum Brain Map 25:287–296

    Article  Google Scholar 

  56. Frot M, Mauguière F (1999) Operculo-insular responses to nociceptive skin stimulation in humans. A review of the literature. Neurophysiol Clin 29:401–410

    Article  CAS  PubMed  Google Scholar 

  57. Ploner M, Schmitz F, Freund HJ, Schnitzler A (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83:1770–1776

    CAS  PubMed  Google Scholar 

  58. Disbrow EA, Hinkley LBN, Roberts TPL (2003) Ipsilateral representation of oral structures in human anterior parietal somatosensory cortex and integration of inputs across the midline. J Comp Neurol 467:487–495

    Article  PubMed  Google Scholar 

  59. Polonara G, Mascioli G, Salvolini U, Fabri M, Manzoni T (2009) Cortical representation of cutaneous receptors in primary somatic sensory cortex of man: a functional imaging study. In: Columbus F (ed) Somatosensory cortex: roles, interventions and traumas. Nova Science Publishers Inc, New York, pp 51–77

    Google Scholar 

  60. Lent R, Schmidt SL (1993) The ontogenesis of the forebrain commissures and the determination of brain asymmetries. Prog Neurobiol 40:249–276

    Article  CAS  PubMed  Google Scholar 

  61. Mihrshahi R (2006) The corpus callosum as an evolutionary innovation. J Exp Zool 306B:8–17

    Article  Google Scholar 

  62. Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A 281:1148–1156

    Article  Google Scholar 

  63. Fabri M, Manzoni T (2004) GAD immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 123:557–566

    Article  CAS  PubMed  Google Scholar 

  64. Mascioli G, Berlucchi G, Pierpaoli C, Salvolini U, Barbaresi P, Fabri M, Polonara G (2015) Functional MRI cortical activations from unilateral tactile-taste stimulations of the tongue. Physiol Behav 151:221–229

    Article  CAS  PubMed  Google Scholar 

  65. Aglioti S, Tassinari G, Corballis M, Berlucchi G (2000) Incomplete gustatory lateralization as shown by analysis of taste discrimination after callosotomy. J Cogn Neurosci 1:238–245

    Article  Google Scholar 

  66. Polonara G, Mascioli G, Paggi A, Tassinari G, Berlucchi G, Salvolini U, Manzoni T, Fabri M (2006) The cortical representation of taste in the human brain: an fMRI study on callosotomized patients. In: 12th annual meeting of human brain mapping organization, Firenze, June 11–15

    Google Scholar 

  67. Geffen G, Nilsson J, Quinn K (1985) The effect of lesions of the corpus callosum on finger localization. Neuropsychologia 23:497–514

    Article  CAS  PubMed  Google Scholar 

  68. Witelson S (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835

    Article  PubMed  Google Scholar 

  69. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited. Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994

    Article  PubMed  Google Scholar 

  70. Chao Y-P, Cho K-H, Yeh C-H, Chou K-H, Chen J-H, Lin C-P (2009) Probabilistic topography of human corpus callosum using cytoarchitectural parcellation and high angular resolution diffusion imaging tractography. Hum Brain Mapp 30:3172–3187

    Article  PubMed  Google Scholar 

  71. Gosselin N, Samson S, Adolphs R, Noulhiane M, Roy M, Hasboun D, Baulac M, Peretz I (2006) Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain 129:2585–2592

    Article  PubMed  Google Scholar 

  72. Iacoboni M, Zaidel E (2003) Interhemispheric visuo-motor integration in humans: the effect of redundant targets. Eur J Neurosci 17:1981–1986

    Article  PubMed  Google Scholar 

  73. Savazzi S, Marzi CA (2002) Speeding up reaction time with invisible stimuli. Curr Biol 12:403–407

    Article  CAS  PubMed  Google Scholar 

  74. Squire LR (1986) Mechanisms of memory. Science 232:1612–1919

    Article  CAS  PubMed  Google Scholar 

  75. Squire LR (1992) Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci 4:232–243

    Article  CAS  PubMed  Google Scholar 

  76. Pierpaoli C, Ferrante L, Berlucchi G, Ortenzi A, Manzoni T, Fabri M (2011) Imitation strategies in callosotomized patients. IBRO Firenze, July 14–18

    Google Scholar 

  77. Fabri M, Polonara G (2008) Role of the corpus callosum in the interhemispheric tranfer of somatosensory information: an fMRI study. In: LN Bakker (ed) Brain Mapping Research Developments. Nova Science Publishers, Inc. NY, pp 77–100

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professors Tullio Manzoni and Ugo Salvolini for establishing the collaboration, and for providing helpful criticism and support during the research; Drs. Angelo Quattrini, Maria Del Pesce, and Aldo Paggi for encouraging callosotomized patients to participate in the studies; Dr. Giulia Mascioli for her great fMRI processing work and neuropsychological testing; Ms. Gabriella Venanzi for scheduling patient examinations; the technical staff of the Istituto di Radiologia for their invaluable assistance during the scan acquisition; the patients and their families, all the volunteers who participated in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Fabri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fabri, M., Foschi, N., Pierpaoli, C., Polonara, G. (2017). Split-Brain Human Subjects. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics