Methods to Study Nervous System Laterality in the Caenorhabditis elegans Model System

Part of the Neuromethods book series (NM, volume 122)


The anatomically and genetically very accessible nervous system of the nematode Caenorhabditis elegans, composed of a total of 302 neurons in the hermaphrodite, displays a number of striking neuronal lateralities which come largely in two forms: unilateral neurons found only on one side of the nervous system and functional differences in otherwise bilaterally symmetric neuron pairs. Two recent reviews have described in detail the genetic mechanisms that specify the most prominent sensory lateralities in two bilaterally symmetric sensory neuron classes in C. elegans. In this Neuromethods chapter, we provide a general overview of the specific methods and opportunities that exist in C. elegans to identify lateralities, to decipher their functional relevance and to dissect the genetic control mechanisms that establish these lateralities. These specific advantages include (a) the ability to identify and visualize neuronal lateralities on the anatomical, gene expression, and neuronal activity level with single cell resolution; (b) the ability to assign function to lateralized neurons using behavioral analysis and genetic manipulation of neuronal activity; (c) the ability to conduct genetic screens for mutants that disrupt lateralities, thereby deciphering the genetic patterning mechanisms that instruct neuronal lateralities.

Key words

Caenorhabditis elegans Functional laterality Sensory receptor Fluorescent reporter Genetic screen Whole genome sequencing 



Left/right asymmetry research in the Hobert laboratory has been funded by the National Institutes of Health and the Howard Hughes Medical Institute.


  1. 1.
    Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behavior of brain asymmetries. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Davidson RJ, Hugdahl K (eds) (1994) Brain asymmetry. MIT Press, Cambridge, MAGoogle Scholar
  3. 3.
    Hugdahl K, Davidson RJ (eds) (2003) The asymmetrical brain. MIT Press, Cambridge, MAGoogle Scholar
  4. 4.
    Concha ML, Bianco IH, Wilson SW (2012) Encoding asymmetry within neural circuits. Nat Rev Neurosci 13:832–843CrossRefPubMedGoogle Scholar
  5. 5.
    Sun T, Walsh CA (2006) Molecular approaches to brain asymmetry and handedness. Nat Rev Neurosci 7:655–662CrossRefPubMedGoogle Scholar
  6. 6.
    Hobert O, Johnston RJ Jr, Chang S (2002) Left-right asymmetry in the nervous system: the Caenorhabditis elegans model. Nat Rev Neurosci 3:629–640CrossRefPubMedGoogle Scholar
  7. 7.
    Frasnelli E, Vallortigara G, Rogers LJ (2012) Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav Rev 36:1273–1291CrossRefPubMedGoogle Scholar
  8. 8.
    White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340CrossRefPubMedGoogle Scholar
  9. 9.
    Hobert O (2014) Development of left/right asymmetry in the Caenorhabditis elegans nervous system: from zygote to postmitotic neuron. Genesis 52:528–543CrossRefPubMedGoogle Scholar
  10. 10.
    Hsieh YW, Alqadah A, Chuang CF (2014) Asymmetric neural development in the Caenorhabditis elegans olfactory system. Genesis 52:544–554CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hall DH, Altun Z (2007) C. elegans atlas. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  12. 12.
    McIntire SL, Jorgensen E, Kaplan J, Horvitz HR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364:337–341CrossRefPubMedGoogle Scholar
  13. 13.
    Turek M, Lewandrowski I, Bringmann H (2013) An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Curr Biol 23:2215–2223CrossRefPubMedGoogle Scholar
  14. 14.
    Van Buskirk C, Sternberg PW (2007) Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 10:1300–1307CrossRefPubMedGoogle Scholar
  15. 15.
    Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56:110–156CrossRefPubMedGoogle Scholar
  16. 16.
    Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119CrossRefPubMedGoogle Scholar
  17. 17.
    Greenwald IS, Sternberg PW, Horvitz HR (1983) The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 34:435–444CrossRefPubMedGoogle Scholar
  18. 18.
    Lambie EJ, Kimble J (1991) Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 112:231–240PubMedGoogle Scholar
  19. 19.
    Hutter H, Schnabel R (1995) Establishment of left-right asymmetry in the Caenorhabditis elegans embryo: a multistep process involving a series of inductive events. Development 121:3417–3424PubMedGoogle Scholar
  20. 20.
    Moskowitz IP, Rothman JH (1996) lin-12 and glp-1 are required zygotically for early embryonic cellular interactions and are regulated by maternal GLP-1 signaling in Caenorhabditis elegans. Development 122:4105–4117PubMedGoogle Scholar
  21. 21.
    Priess JR (2005) Notch signaling in the C. elegans embryo. In: WormBook, C.e.R. Community (ed). WormBook. doi: 10.1895/wormbook.1.4.1,
  22. 22.
    Hermann GJ, Leung B, Priess JR (2000) Left-right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway. Development 127:3429–3440PubMedGoogle Scholar
  23. 23.
    Lin R, Hill RJ, Priess JR (1998) POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 92:229–239CrossRefPubMedGoogle Scholar
  24. 24.
    Hutter H, Schnabel R (1994) glp-1 and inductions establishing embryonic axes in C. elegans. Development 120:2051–2064PubMedGoogle Scholar
  25. 25.
    Cochella L, Hobert O (2012) Embryonic priming of a miRNA locus predetermines postmitotic neuronal left/right asymmetry in C. elegans. Cell 151:1229–1242CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805CrossRefPubMedGoogle Scholar
  27. 27.
    Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83:207–218CrossRefPubMedGoogle Scholar
  28. 28.
    Yu S, Avery L, Baude E, Garbers DL (1997) Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci U S A 94:3384–3387CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Troemel ER, Sagasti A, Bargmann CI (1999) Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99:387–398CrossRefPubMedGoogle Scholar
  30. 30.
    Lesch BJ, Bargmann CI (2010) The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 24:1802–1815CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ortiz CO, Etchberger JF, Posy SL, Frokjaer-Jensen C, Lockery S, Honig B, Hobert O (2006) Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics 173:131–149CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O (2005) MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci U S A 102:12449–12454CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  34. 34.
    Doitsidou M, Poole RJ, Sarin S, Bigelow H, Hobert O (2010) C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PLoS ONE 5:e15435CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hobert O, Tessmar K, Ruvkun G (1999) The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 126:1547–1562PubMedGoogle Scholar
  36. 36.
    Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845–849CrossRefPubMedGoogle Scholar
  37. 37.
    Sarin S, Prabhu S, O'Meara MM, Pe'er I, Hobert O (2008) Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods 5:865–867CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang F, O'Meara MM, Hobert O (2011) A left/right asymmetric neuronal differentiation program is controlled by the Caenorhabditis elegans lsy-27 zinc-finger transcription factor. Genetics 188:753–759CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Flowers EB, Poole RJ, Tursun B, Bashllari E, Pe'er I, Hobert O (2010) The Groucho ortholog UNC-37interacts with the short Groucho-like protein LSY-22 to control developmental decisions in C. elegans. Development 137:1799–1805CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sarin S, Bertrand V, Bigelow H, Boyanov A, Doitsidou M, Poole RJ, Narula S, Hobert O (2010) Analysis of multiple ethyl methanesulfonate-mutagenized caenorhabditis elegans strains by whole-genome sequencing. Genetics 185:417–430CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dusenbery DB (1974) Analysis of chemotaxis in the nematode Caenorhabditis elegans by countercurrent separation. J Exp Zool 188:41–47CrossRefPubMedGoogle Scholar
  42. 42.
    Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70:817–821CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72:4061–4065CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527CrossRefPubMedGoogle Scholar
  45. 45.
    Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742CrossRefPubMedGoogle Scholar
  46. 46.
    Pierce-Shimomura JT, Faumont S, Gaston MR, Pearson BJ, Lockery SR (2001) The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410:694–698CrossRefPubMedGoogle Scholar
  47. 47.
    Wes PD, Bargmann CI (2001) C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410:698–701CrossRefPubMedGoogle Scholar
  48. 48.
    Ortiz CO, Faumont S, Takayama J, Ahmed HK, Goldsmith AD, Pocock R, McCormick KE, Kunimoto H, Iino Y, Lockery S et al (2009) Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Curr Biol 19:996–1004CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Glock C, Nagpal J, Gottschalk A (2015) Microbial rhodopsin optogenetic tools: application for analyses of synaptic transmission and of neuronal network activity in behavior. Methods Mol Biol 1327:87–103CrossRefPubMedGoogle Scholar
  50. 50.
    Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48CrossRefPubMedGoogle Scholar
  51. 51.
    Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR (2008) Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454:114–117CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bertrand V, Bisso P, Poole RJ, Hobert O (2011) Notch-dependent induction of left/right asymmetry in C. elegans interneurons and motoneurons. Curr Biol 21:1225–1231CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Prevedel R, Yoon YG, Hoffmann M, Pak N, Wetzstein G, Kato S, Schrodel T, Raskar R, Zimmer M, Boyden ES et al (2014) Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat Methods 11:727–730CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Boulin T, Etchberger JF, Hobert O (2006). Reporter gene fusions. WormBook, pp 1–23Google Scholar
  55. 55.
    Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O (2012) CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics 192:1249–1269CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesColumbia University, Howard Hughes Medical InstituteNew YorkUSA
  2. 2.Department of Biochemistry and Molecular BiophysicsColumbia University, Howard Hughes Medical InstituteNew YorkUSA

Personalised recommendations