Genetics of Human Handedness and Laterality

  • Silvia ParacchiniEmail author
  • Tom Scerri
Part of the Neuromethods book series (NM, volume 122)


Handedness is the most evident lateralized trait in humans. A weak (~25 %) genetic component has been consistently reported for hand preference across independent studies. Genomic technologies have made rapid progress in increasing throughput and resolution of genetic mapping but their success is largely dependent on the availability of large sample sizes. Hand preference in humans is easily determined and available for tens of thousands of individuals for which genomic data are also available. Yet, strong genetic candidates for hand preference have not been proposed yet. Genetics analyses using quantitative measures of handedness have demonstrated that genes involved in establishing left/right structural laterality play a role in controlling behavioral laterality. Therefore it is crucial how handedness is measured and it is clear that other genetic determinants remain to be discovered. The combination of detailed phenotypes with high throughput technologies promises to advance, in the near future, our understanding of handedness genetics and, in turn, the relevant biology. These discoveries will contribute to addressing one of the long-standing questions in laterality research: what makes some people left-handed?

Key words

Human genetics GWAS Quantitative genetics Handedness Brain asymmetries 



Silvia Paracchini is a Royal Society University Research Fellow. The authors would like to thank Dr. William Brandler for useful comments on the manuscript of this chapter.


  1. 1.
    Berker EA, Berker AH, Smith A (1986) Translation of Broca’s 1865 report. Localization of speech in the third left frontal convolution. Arch Neurol 43(10):1065–1072CrossRefPubMedGoogle Scholar
  2. 2.
    Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game-theoretical analysis of population structure. Proc Biol Sci 271(1541):853–857CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Ringelstein EB, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123(Pt 12):2512–2518CrossRefPubMedGoogle Scholar
  4. 4.
    Bishop DV (2013) Cerebral asymmetry and language development: cause, correlate, or consequence? Science 340(6138):1230531CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brandler WM, Paracchini S (2014) The genetic relationship between handedness and neurodevelopmental disorders. Trends Mol Med 20(2):83–90CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hepper PG (2013) The developmental origins of laterality: fetal handedness. Dev Psychobiol 55(6):588–595CrossRefPubMedGoogle Scholar
  7. 7.
    Carter-Saltzman L (1980) Biological and sociocultural effects on handedness: comparison between biological and adoptive families. Science 209(4462):1263–1265CrossRefPubMedGoogle Scholar
  8. 8.
    Bishop DV (2015) The interface between genetics and psychology: lessons from developmental dyslexia. Proc Biol Sci 282(1806):20143139CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Medland SE, Duffy DL, Wright MJ, Geffen GM, Hay DA, Levy F, van-Beijsterveldt CE, Willemsen G, Townsend GC, White V, Hewitt AW, Mackey DA, Bailey JM, Slutske WS, Nyholt DR, Treloar SA, Martin NG, Boomsma DI (2009) Genetic influences on handedness: data from 25,732 Australian and Dutch twin families. Neuropsychologia 47(2):330–337CrossRefPubMedGoogle Scholar
  10. 10.
    Macgregor S, Cornes BK, Martin NG, Visscher PM (2006) Bias, precision and heritability of self-reported and clinically measured height in Australian twins. Hum Genet 120(4):571–580CrossRefPubMedGoogle Scholar
  11. 11.
    Bisazza A, Facchin L, Vallortigara G (2000) Heritability of lateralization in fish: concordance of right-left asymmetry between parents and offspring. Neuropsychologia 38(7):907–912CrossRefPubMedGoogle Scholar
  12. 12.
    Annett M (2002) Non-right-handedness and schizophrenia. Br J Psychiatry 181:349–350CrossRefPubMedGoogle Scholar
  13. 13.
    McManus IC (1985) Handedness, language dominance and aphasia: a genetic model. Psychol Med Monogr Suppl 8:1–40CrossRefPubMedGoogle Scholar
  14. 14.
    Fisher SE, Vargha-Khadem F, Watkins KE, Monaco AP, Pembrey ME (1998) Localisation of a gene implicated in a severe speech and language disorder. Nat Genet 18(2):168–170CrossRefPubMedGoogle Scholar
  15. 15.
    Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413(6855):519–523CrossRefPubMedGoogle Scholar
  16. 16.
    Newbury DF, Monaco AP, Paracchini S (2014) Reading and language disorders: the importance of both quantity and quality. Genes (Basel) 5(2):285–309CrossRefGoogle Scholar
  17. 17.
    Newbury DF, Winchester L, Addis L, Paracchini S, Buckingham LL, Clark A, Cohen W, Cowie H, Dworzynski K, Everitt A, Goodyer IM, Hennessy E, Kindley AD, Miller LL, Nasir J, O'Hare A, Shaw D, Simkin Z, Simonoff E, Slonims V, Watson J, Ragoussis J, Fisher SE, Seckl JR, Helms PJ, Bolton PF, Pickles A, Conti-Ramsden G, Baird G, Bishop DV, Monaco AP (2009) CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am J Hum Genet 85(2):264–272CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcon M, Oliver PL, Davies KE, Geschwind DH, Monaco AP, Fisher SE (2008) A functional genetic link between distinct developmental language disorders. N Engl J Med 359(22):2337–2345CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Van Agtmael T, Forrest SM, Del-Favero J, Van Broeckhoven C, Williamson R (2003) Parametric and nonparametric genome scan analyses for human handedness. Eur J Hum Genet 11(10):779–783CrossRefPubMedGoogle Scholar
  20. 20.
    Warren DM, Stern M, Duggirala R, Dyer TD, Almasy L (2006) Heritability and linkage analysis of hand, foot, and eye preference in Mexican Americans. Laterality 11(6):508–524CrossRefPubMedGoogle Scholar
  21. 21.
    Somers M, Ophoff RA, Aukes MF, Cantor RM, Boks MP, Dauwan M, de Visser KL, Kahn RS, Sommer IE (2015) Linkage analysis in a Dutch population isolate shows no major gene for left-handedness or atypical language lateralization. J Neurosci 35(23):8730–8736CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Van Agtmael T, Forrest SM, Williamson R (2002) Parametric and non-parametric linkage analysis of several candidate regions for genes for human handedness. Eur J Hum Genet 10(10):623–630CrossRefPubMedGoogle Scholar
  23. 23.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923CrossRefPubMedGoogle Scholar
  24. 24.
    Bloss CS, Delis DC, Salmon DP, Bondi MW (2010) APOE genotype is associated with left-handedness and visuospatial skills in children. Neurobiol Aging 31(5):787–795CrossRefPubMedGoogle Scholar
  25. 25.
    Piper BJ, Yasen AL, Taylor AE, Ruiz JR, Gaynor JW, Dayger CA, Gonzalez-Gross M, Kwon OD, Nilsson LG, Day IN, Raber J, Miller JK (2013) Non-replication of an association of Apolipoprotein E2 with sinistrality. Laterality 18(2):251–261CrossRefPubMedGoogle Scholar
  26. 26.
    Hubacek JA, Piper BJ, Pikhart H, Peasey A, Kubinova R, Bobak M (2013) Lack of an association between left-handedness and APOE polymorphism in a large sample of adults: results of the Czech HAPIEE study. Laterality 18(5):513–519CrossRefPubMedGoogle Scholar
  27. 27.
    Francks C, Fisher SE, MacPhie IL, Richardson AJ, Marlow AJ, Stein JF, Monaco AP (2002) A genomewide linkage screen for relative hand skill in sibling pairs. Am J Hum Genet 70(3):800–805CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Laval SH, Dann JC, Butler RJ, Loftus J, Rue J, Leask SJ, Bass N, Comazzi M, Vita A, Nanko S, Shaw S, Peterson P, Shields G, Smith AB, Stewart J, DeLisi LE, Crow TJ (1998) Evidence for linkage to psychosis and cerebral asymmetry (relative hand skill) on the X chromosome. Am J Med Genet 81(5):420–427CrossRefPubMedGoogle Scholar
  29. 29.
    Medland SE, Duffy DL, Spurdle AB, Wright MJ, Geffen GM, Montgomery GW, Martin NG (2005) Opposite effects of androgen receptor CAG repeat length on increased risk of left-handedness in males and females. Behav Genet 35(6):735–744CrossRefPubMedGoogle Scholar
  30. 30.
    Hampson E, Sankar JS (2012) Hand preference in humans is associated with testosterone levels and androgen receptor gene polymorphism. Neuropsychologia 50(8):2018–2025CrossRefPubMedGoogle Scholar
  31. 31.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, Parkinson H (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(database issue):D1001–D1006CrossRefPubMedGoogle Scholar
  32. 32.
    Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT (2011) Basic statistical analysis in genetic case-control studies. Nat Protoc 6(2):121–133CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Eriksson N, Macpherson JM, Tung JY, Hon LS, Naughton B, Saxonov S, Avey L, Wojcicki A, Pe'er I, Mountain J (2010) Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet 6(6):e1000993CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Armour JA, Davison A, McManus IC (2014) Genome-wide association study of handedness excludes simple genetic models. Heredity 112(3):221–225CrossRefPubMedGoogle Scholar
  35. 35.
    McManus IC, Davison A, Armour JA (2013) Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Ann N Y Acad Sci 1288:48–58CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMedGoogle Scholar
  37. 37.
    Crovitz HF, Zener K (1962) A group-test for assessing hand- and eye-dominance. Am J Psychol 75:271–276CrossRefPubMedGoogle Scholar
  38. 38.
    Annett M (1985) Left, right, hand and brain: the right shift theory. Psychology Press, LondonGoogle Scholar
  39. 39.
    Brandler WM, Morris AP, Evans DM, Scerri TS, Kemp JP, Timpson NJ, Pourcain BS, Smith GD, Ring SM, Stein J, Monaco AP, Talcott JB, Fisher SE, Webber C, Paracchini S (2013) Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genet 9(9):e1003751CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lien YJ, Chen WJ, Hsiao PC, Tsuang HC (2015) Estimation of heritability for varied indexes of handedness. Laterality 20:469–482CrossRefPubMedGoogle Scholar
  41. 41.
    Francks C, Fisher SE, Marlow AJ, MacPhie IL, Taylor KE, Richardson AJ, Stein JF, Monaco AP (2003) Familial and genetic effects on motor coordination, laterality, and reading-related cognition. Am J Psychiatry 160(11):1970–1977CrossRefPubMedGoogle Scholar
  42. 42.
    Francks C, Maegawa S, Lauren J, Abrahams BS, Velayos-Baeza A, Medland SE, Colella S, Groszer M, McAuley EZ, Caffrey TM, Timmusk T, Pruunsild P, Koppel I, Lind PA, Matsumoto-Itaba N, Nicod J, Xiong L, Joober R, Enard W, Krinsky B, Nanba E, Richardson AJ, Riley BP, Martin NG, Strittmatter SM, Moller HJ, Rujescu D, Clair DS, Muglia P, Roos JL, Fisher SE, Wade-Martins R, Rouleau GA, Stein JF, Karayiorgou M, Geschwind DH, Ragoussis J, Kendler KS, Airaksinen MS, Oshimura M, DeLisi LE, Monaco AP (2007) LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry 12(12):1129–1139, 1057CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ludwig KU, Mattheisen M, Muhleisen TW, Roeske D, Schmal C, Breuer R, Schulte-Korne G, Muller-Myhsok B, Nothen MM, Hoffmann P, Rietschel M, Cichon S (2009) Supporting evidence for LRRTM1 imprinting effects in schizophrenia. Mol Psychiatry 14(8):743–745CrossRefPubMedGoogle Scholar
  44. 44.
    McManus C, Nicholls M, Vallortigara G (2009) Editorial commentary: is LRRTM1 the gene for handedness? Laterality 14(1):1–2CrossRefPubMedGoogle Scholar
  45. 45.
    Savitz J, van der Merwe L, Solms M, Ramesar R (2007) Lateralization of hand skill in bipolar affective disorder. Genes Brain Behav 6(8):698–705CrossRefPubMedGoogle Scholar
  46. 46.
    Scerri TS, Brandler WM, Paracchini S, Morris AP, Ring SM, Richardson AJ, Talcott JB, Stein J, Monaco AP (2011) PCSK6 is associated with handedness in individuals with dyslexia. Hum Mol Genet 20(3):608–614CrossRefPubMedGoogle Scholar
  47. 47.
    Arning L, Ocklenburg S, Schulz S, Ness V, Gerding WM, Hengstler JG, Falkenstein M, Epplen JT, Gunturkun O, Beste C (2013) VNTR polymorphism is associated with degree of handedness but not direction of handedness. PLoS One 8(6):e67251CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125(1):33–45CrossRefPubMedGoogle Scholar
  49. 49.
    Grande C, Patel NH (2009) Nodal signalling is involved in left-right asymmetry in snails. Nature 457(7232):1007–1011CrossRefPubMedGoogle Scholar
  50. 50.
    Barth KA, Miklosi A, Watkins J, Bianco IH, Wilson SW, Andrew RJ (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol 15(9):844–850CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mooney MA, Nigg JT, McWeeney SK, Wilmot B (2014) Functional and genomic context in pathway analysis of GWAS data. Trends Genet 30(9):390–400CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ng A, Wong M, Viviano B, Erlich JM, Alba G, Pflederer C, Jay PY, Saunders S (2009) Loss of glypican-3 function causes growth factor-dependent defects in cardiac and coronary vascular development. Dev Biol 335(1):208–215CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhou J, Yang F, Leu NA, Wang PJ (2012) MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet 8(3):e1002516CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bonnafe E, Touka M, AitLounis A, Baas D, Barras E, Ucla C, Moreau A, Flamant F, Dubruille R, Couble P, Collignon J, Durand B, Reith W (2004) The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol Cell Biol 24(10):4417–4427CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12(11):938–943CrossRefPubMedGoogle Scholar
  56. 56.
    Benadiba C, Magnani D, Niquille M, Morle L, Valloton D, Nawabi H, Ait-Lounis A, Otsmane B, Reith W, Theil T, Hornung JP, Lebrand C, Durand B (2012) The ciliogenic transcription factor RFX3 regulates early midline distribution of guidepost neurons required for corpus callosum development. PLoS Genet 8(3):e1002606CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    McManus IC, Martin N, Stubbings GF, Chung EM, Mitchison HM (2004) Handedness and situs inversus in primary ciliary dyskinesia. Proc Biol Sci 271(1557):2579–2582CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sun T, Walsh CA (2006) Molecular approaches to brain asymmetry and handedness. Nat Rev Neurosci 7(8):655–662CrossRefPubMedGoogle Scholar
  59. 59.
    Deciphering Developmental Disorders S (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–228Google Scholar
  60. 60.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kavaklioglu T, Ajmal M, Hameed A, Francks C (2015) Whole exome sequencing for handedness in a large and highly consanguineous family., NeuropsychologiaGoogle Scholar
  62. 62.
    Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6(4):e1000888CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74CrossRefGoogle Scholar
  64. 64.
    Dennis MY, Paracchini S, Scerri TS, Prokunina-Olsson L, Knight JC, Wade-Martins R, Coggill P, Beck S, Green ED, Monaco AP (2009) A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genet 5(3):e1000436CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, Sousa AM, Pletikos M, Meyer KA, Sedmak G, Guennel T, Shin Y, Johnson MB, Krsnik Z, Mayer S, Fertuzinhos S, Umlauf S, Lisgo SN, Vortmeyer A, Weinberger DR, Mane S, Hyde TM, Huttner A, Reimers M, Kleinman JE, Sestan N (2011) Spatio-temporal transcriptome of the human brain. Nature 478(7370):483–489CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shore R, Covill L, Pettigrew KA, Brandler WM, Diaz R, Xu Y, Tello J, Talcott J, Newbury DF, Stein J, Monaco AP, Paracchini S (2016) The handedness-associated PCSK6 locus spans a bidirectional promoter regulating novel transcripts. Hum Mol Genet 25(9):1771–1779CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Paracchini S, Scerri T, Monaco AP (2007) The genetic lexicon of dyslexia. Annu Rev Genomics Hum Genet 8:57–79CrossRefPubMedGoogle Scholar
  68. 68.
    Geschwind DH, Miller BL, DeCarli C, Carmelli D (2002) Heritability of lobar brain volumes in twins supports genetic models of cerebral laterality and handedness. Proc Natl Acad Sci U S A 99(5):3176–3181CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Sun T, Patoine C, Abu-Khalil A, Visvader J, Sum E, Cherry TJ, Orkin SH, Geschwind DH, Walsh CA (2005) Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science 308(5729):1794–1798CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, Geschwind DH, Mane SM, State MW, Sestan N (2009) Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62(4):494–509CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lambert N, Lambot MA, Bilheu A, Albert V, Englert Y, Libert F, Noel JC, Sotiriou C, Holloway AK, Pollard KS, Detours V, Vanderhaeghen P (2011) Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution. PLoS One 6(3):e17753CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pletikos M, Sousa AM, Sedmak G, Meyer KA, Zhu Y, Cheng F, Li M, Kawasawa YI, Sestan N (2014) Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 81(2):321–332CrossRefPubMedGoogle Scholar
  73. 73.
    Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Roge B, Heron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27CrossRefPubMedGoogle Scholar
  74. 74.
    Waga C, Okamoto N, Ondo Y, Fukumura-Kato R, Goto Y, Kohsaka S, Uchino S (2011) Novel variants of the SHANK3 gene in Japanese autistic patients with severe delayed speech development. Psychiatr Genet 21(4):208–211CrossRefPubMedGoogle Scholar
  75. 75.
    Meda SA, Gelernter J, Gruen JR, Calhoun VD, Meng H, Cope NA, Pearlson GD (2008) Polymorphism of DCDC2 reveals differences in cortical morphology of healthy individuals—a preliminary voxel based morphometry study. Brain Imaging Behav 2(1):21–26CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Guadalupe T, Zwiers MP, Teumer A, Wittfeld K, Vasquez AA, Hoogman M, Hagoort P, Fernandez G, Buitelaar J, Hegenscheid K, Volzke H, Franke B, Fisher SE, Grabe HJ, Francks C (2014) Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Hum Brain Mapp 35(7):3277–3289CrossRefPubMedGoogle Scholar
  77. 77.
    Leventer RJ, Scerri T, Marsh AP, Pope K, Gillies G, Maixner W, MacGregor D, Harvey AS, Delatycki MB, Amor DJ, Crino P, Bahlo M, Lockhart PJ (2015) Hemispheric cortical dysplasia secondary to a mosaic somatic mutation in MTOR. Neurology 84(20):2029–2032CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, Scott E, Bafna V, Hill KJ, Collazo A, Funari V, Russ C, Gabriel SB, Mathern GW, Gleeson JG (2012) De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44(8):941–945CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Paabo S (2014) The human condition—a molecular approach. Cell 157(1):216–226CrossRefPubMedGoogle Scholar
  80. 80.
    Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M, Vernes SC, Fisher SE, Tyler-Smith C (2013) FOXP2 targets show evidence of positive selection in European populations. Am J Hum Genet 92(5):696–706CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Enard W, Gehre S, Hammerschmidt K, Holter SM, Blass T, Somel M, Bruckner MK, Schreiweis C, Winter C, Sohr R, Becker L, Wiebe V, Nickel B, Giger T, Muller U, Groszer M, Adler T, Aguilar A, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Favor J, Fuchs H, Gailus-Durner V, Hans W, Holzlwimmer G, Javaheri A, Kalaydjiev S, Kallnik M, Kling E, Kunder S, Mossbrugger I, Naton B, Racz I, Rathkolb B, Rozman J, Schrewe A, Busch DH, Graw J, Ivandic B, Klingenspor M, Klopstock T, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, Zimmer A, Fisher SE, Morgenstern R, Arendt T, de Angelis MH, Fischer J, Schwarz J, Paabo S (2009) A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137(5):961–971CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of MedicineUniversity of St AndrewsSt. AndrewsScotland
  2. 2.Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia

Personalised recommendations