Imaging Techniques in Insects

  • Marco Paoli
  • Mara Andrione
  • Albrecht Haase
Part of the Neuromethods book series (NM, volume 122)


The present chapter describes how to apply optical neuroimaging to study brain lateralization in insects. It provides two complete protocols, one for in vivo imaging to obtain information on functional lateralization, and one on histochemical techniques to study morphological asymmetries. Both sections start with the animal preparation, and illustrate the different possibilities for brain tissue labeling. Then, imaging techniques are presented, concentrating on wide-field fluorescence microscopy, confocal, and two-photon laser scanning microscopy. After some remarks on the main methods for data analysis, studies on functional and morphological lateralization in insects are reviewed.


Lateralization Calcium imaging Two-photon microscopy Honeybee Drosophila 


  1. 1.
    Letzkus P, Ribi W WA, Wood JT et al (2006) Lateralization of olfaction in the honeybee Apis mellifera. Curr Biol 16:1471–1476. doi: 10.1016/j.cub.2006.05.060 CrossRefPubMedGoogle Scholar
  2. 2.
    Kells AR, Goulson D (2001) Evidence for handedness in bumblebees. J Insect Behav 14:47–55CrossRefGoogle Scholar
  3. 3.
    Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralization. Brain Res Brain Res Rev 30:164–175CrossRefPubMedGoogle Scholar
  4. 4.
    Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Front Psychol 4:939CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Frasnelli E, Vallortigara G, Rogers LJ (2012) Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci Biobehav Rev 36:1273–1291. doi: 10.1016/j.neubiorev.2012.02.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Hodgkin AL, Huxley AF (1945) Resting and action potentials in single nerve fibres. J Physiol 104:176–195CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Matsumoto SG, Hildebrand JG (1981) Olfactory mechanisms in the Moth Manduca sexta: response characteristics and morphology of central neurons in the antennal lobes. Proc R Soc B Biol Sci 213:249–277CrossRefGoogle Scholar
  9. 9.
    Lieke EE (1993) Optical recording of neuronal activity in the insect central nervous system: odorant coding by the antennal lobes of honeybees. Eur J Neurosci 5:49–55. doi: 10.1111/j.1460-9568.1993.tb00204.x CrossRefPubMedGoogle Scholar
  10. 10.
    Joerges J, Küttner A, Galizia CG, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387:285–288. doi: 10.1038/387285a0 CrossRefGoogle Scholar
  11. 11.
    Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 2:473–478. doi: 10.1038/8144 CrossRefPubMedGoogle Scholar
  12. 12.
    Galizia CG, Nägler K, Hölldobler B, Menzel R (1998) Odour coding is bilaterally symmetrical in the antennal lobes of honeybees (Apis mellifera). Eur J Neurosci 10:2964–2974CrossRefPubMedGoogle Scholar
  13. 13.
    Haase A, Rigosi E, Frasnelli E et al (2011) A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies. Eur Biophys J 40:1247–1258. doi: 10.1007/s00249-011-0748-6 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Galizia CG, McIlwrath SL, Menzel R (1999) A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res 295:383–394. doi: 10.1007/s004410051245 CrossRefPubMedGoogle Scholar
  15. 15.
    Grabe V, Strutz A, Baschwitz A et al (2015) Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. J Comp Neurol 523:530–544. doi: 10.1002/cne.23697 CrossRefPubMedGoogle Scholar
  16. 16.
    Galizia CG, Joerges J, Küttner A et al (1997) A semi-in-vivo preparation for optical recording of the insect brain. J Neurosci Methods 76:61–69. doi: 10.1016/S0165-0270(97)00080-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87:1106–1117CrossRefPubMedGoogle Scholar
  18. 18.
    Galizia GC, Vetter RS (2004) Methods in insect sensory neuroscience. Adv Insect Sens Neurosci. doi: 10.1201/9781420039429
  19. 19.
    Stökl J, Strutz A, Dafni A et al (2010) A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast. Curr Biol 20:1846–1852. doi: 10.1016/j.cub.2010.09.033 CrossRefPubMedGoogle Scholar
  20. 20.
    Silbering AF, Bell R, Galizia CG, Benton R (2012) Calcium imaging of odor-evoked responses in the Drosophila antennal lobe. J Vis Exp 1–10. doi: 10.3791/2976
  21. 21.
    Zochowski M, Wachowiak M, Falk CX et al (2000) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198:1–21CrossRefPubMedGoogle Scholar
  22. 22.
    Homma R, Baker BJ, Jin L et al (2009) Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes. Philos Trans R Soc Lond B Biol Sci 364:2453–2467. doi: 10.1098/rstb.2009.0084 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Galizia CGC, Küttner A, Joerges J, Menzel R (2000) Odour representation in honeybee olfactory glomeruli shows slow temporal dynamics: an optical recording study using a voltage-sensitive dye. J Insect Physiol 46:877–886. doi: 10.1016/S0022-1910(99)00194-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Wenner P, Tsau Y, Cohen LB et al (1996) Voltage-sensitive dye recording using retrogradely transported dye in the chicken spinal cord: staining and signal characteristics. J Neurosci Methods 70:111–120CrossRefPubMedGoogle Scholar
  25. 25.
    Yan P, Acker CD, Zhou W-L et al (2012) Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci U S A 109(50):20443–20448. doi: 10.1073/pnas.1214850109 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73:862–885. doi: 10.1016/j.neuron.2012.02.011 CrossRefPubMedGoogle Scholar
  27. 27.
    Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A 190:21–38. doi: 10.1007/s00359-003-0469-0 CrossRefGoogle Scholar
  28. 28.
    Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125PubMedGoogle Scholar
  29. 29.
    Knöpfel T (2012) Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 13:687–700. doi: 10.1038/nrn3293 PubMedGoogle Scholar
  30. 30.
    Broussard GJ, Liang R, Tian L (2014) Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 7:97. doi: 10.3389/fnmol.2014.00097 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887. doi: 10.1038/42264 CrossRefPubMedGoogle Scholar
  32. 32.
    Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141. doi: 10.1038/84397 CrossRefPubMedGoogle Scholar
  33. 33.
    Siegel MS, Isacoff EY (1997) A genetically encoded optical probe of membrane voltage. Neuron 19:735–741. doi: 10.1016/S0896-6273(00)80955-1 CrossRefPubMedGoogle Scholar
  34. 34.
    Sakai R, Repunte-Canonigo V, Raj CD, Knöpfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13:2314–2318CrossRefPubMedGoogle Scholar
  35. 35.
    Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195CrossRefPubMedGoogle Scholar
  36. 36.
    Kuner T, Augustine GJ (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27:447–459. doi: 10.1016/S0896-6273(00)00056-8 CrossRefPubMedGoogle Scholar
  37. 37.
    Arosio D, Ricci F, Marchetti L et al (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 7:516–518. doi: 10.1038/nmeth.1471 CrossRefPubMedGoogle Scholar
  38. 38.
    Reiff DF (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778. doi: 10.1523/JNEUROSCI.4900-04.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hendel T, Mank M, Schnell B et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411. doi: 10.1523/JNEUROSCI.1038-08.2008 CrossRefPubMedGoogle Scholar
  40. 40.
    Ataka K, Pieribone VA (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 82:509–516. doi: 10.1016/S0006-3495(02)75415-5 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Murata Y, Iwasaki H, Sasaki M et al (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243CrossRefPubMedGoogle Scholar
  42. 42.
    Rigosi E, Haase A, Rath L et al (2015) Asymmetric neural coding revealed by in vivo calcium imaging in the honey bee brain. Proc R Soc B Biol Sci 282:20142571. doi: 10.1098/rspb.2014.2571 CrossRefGoogle Scholar
  43. 43.
    Haase A, Rigosi E, Trona F et al (2010) In-vivo two-photon imaging of the honey bee antennal lobe. Biomed Opt Express 2:131–138. doi: 10.1364/BOE.1.000131 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Szyszka P, Demmler C, Oemisch M et al (2011) Mind the gap: olfactory trace conditioning in honeybees. J Neurosci 31:7229–7239. doi: 10.1523/JNEUROSCI.6668-10.2011 CrossRefPubMedGoogle Scholar
  45. 45.
    Paoli M., A. Anesi, R. Antolini, G. Guella, G. Vallortigara, and A. Haase (2016) Differential odour coding of isotopomers in the honeybee brain. Sci Rep, 6:21893Google Scholar
  46. 46.
    Paoli M, Weisz N, Antolini R, Haase A. (2016) Spatially resolved time-frequency analysis of odour coding in the insect antennal lobe. Eur J Neurosci. 2016 Sep;44(6):2387–95. doi: 10.1111/ejn.13344
  47. 47.
    Stierle JS, Galizia CG, Szyszka P (2013) Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture. J Neurosci 33:6060–6069. doi: 10.1523/JNEUROSCI.5838-12.2013 CrossRefPubMedGoogle Scholar
  48. 48.
    Strauch M, Lüdke A, Münch D et al (2014) More than apples and oranges—detecting cancer with a fruit fly’s antenna. Sci Rep 4:1–9. doi: 10.1038/srep03576 Google Scholar
  49. 49.
    Denk W, Strickler J, Webb W (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. doi: 10.1126/science.2321027 CrossRefPubMedGoogle Scholar
  50. 50.
    Locatelli FF, Fernandez PC, Villareal F et al (2013) Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing. Eur J Neurosci 37:63–79. doi: 10.1111/ejn.12021 CrossRefPubMedGoogle Scholar
  51. 51.
    Guerrieri F, Schubert M, Sandoz J-C, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3:e60. doi: 10.1371/journal.pbio.0030060 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Louis M, Huber T, Benton R et al (2008) Bilateral olfactory sensory input enhances chemotaxis behavior. Nat Neurosci 11:187–199. doi: 10.1038/nn2031 CrossRefPubMedGoogle Scholar
  53. 53.
    Sinakevitch IT, Smith AN, Locatelli F et al (2013) Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Front Syst Neurosci 7:70. doi: 10.3389/fnsys.2013.00070 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hourcade B, Perisse E, Devaud J-M, Sandoz J-C (2009) Long-term memory shapes the primary olfactory center of an insect brain. Learn Mem 16:607–615. doi: 10.1101/lm.1445609 CrossRefPubMedGoogle Scholar
  55. 55.
    Rigosi E, Frasnelli E, Vinegoni C et al (2011) Searching for anatomical correlates of olfactory lateralization in the honeybee antennal lobes: a morphological and behavioural study. Behav Brain Res 221:290–294. doi: 10.1016/j.bbr.2011.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Winnington AP, Napper RM, Mercer AR (1996) Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee. J Comp Neurol 365:479–490. doi: 10.1002/(SICI)1096-9861(19960212)365:3<479::AID-CNE10>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  57. 57.
    Pascual A, Huang K, Neveu J, Préat T (2004) Neuroanatomy: brain asymmetry and long-term memory. Nature 427:605–606. doi: 10.1038/427605a CrossRefPubMedGoogle Scholar
  58. 58.
    Hourcade B, Muenz TS, Sandoz J-C et al (2010) Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain? J Neurosci 30:6461–6465. doi: 10.1523/JNEUROSCI.0841-10.2010 CrossRefPubMedGoogle Scholar
  59. 59.
    Gaudry Q, Hong EJ, Kain J et al (2013) Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature 493:424–428. doi: 10.1038/nature11747 CrossRefPubMedGoogle Scholar
  60. 60.
    Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J et al (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. Institute of Physics and Engeneering in Medicine. J Histochem Cytochem 47:1179–1188. doi: 10.1177/002215549904700910 CrossRefPubMedGoogle Scholar
  61. 61.
    Elsam J (2015) Histological and histochemical methods: theory and practice, 5th edn. Biotech Histochem 1. Institute of Physics and Engeneering in MedicineGoogle Scholar
  62. 62.
    Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58:R37–R61. doi: 10.1088/0031-9155/58/11/R37 CrossRefPubMedGoogle Scholar
  63. 63.
    Haase A (2011) Simultaneous morphological and functional imaging of the honeybee’s brain by two-photon microscopy. Nuovo Cim C 34:1–10. doi: 10.1393/ncc/i2011-10960-4 Google Scholar
  64. 64.
    Bucher D, Scholz M, Stetter M et al (2000) Correction methods for three-dimensional reconstructions from confocal images: I. Tissue shrinking and axial scaling. J Neurosci Methods 100:135–143. doi: 10.1016/S0165-0270(00)00245-4 CrossRefPubMedGoogle Scholar
  65. 65.
    Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14:1481–1488. doi: 10.1038/nn.2928 CrossRefPubMedGoogle Scholar
  66. 66.
    Groh C, Kelber C, Grübel K, Rössler W (2014) Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers. Proc Biol Sci 281:20140432. doi: 10.1098/rspb.2014.0432 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Danielson E, Lee SH (2014) SynPAnal: software for rapid quantification of the density and intensity of protein puncta from fluorescence microscopy images of neurons. PLoS One 9:e115298. doi: 10.1371/journal.pone.0115298 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sturt BL, Bamber BA (2012) Automated quantification of synaptic fluorescence in C. elegans. J Vis Exp. doi: 10.3791/4090
  69. 69.
    Berdnik D, Chihara T, Couto A, Luo L (2006) Wiring stability of the adult Drosophila olfactory circuit after lesion. J Neurosci 26:3367–3376. doi: 10.1523/JNEUROSCI.4941-05.2006 CrossRefPubMedGoogle Scholar
  70. 70.
    Flanagan D, Mercer AR (1989) An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L. (Hymenoptera: Apidae). Int J Insect Morphol Embryol 18:145–159. doi: 10.1016/0020-7322(89)90023-8 CrossRefGoogle Scholar
  71. 71.
    Brandt R, Rohlfing T, Rybak J et al (2005) Three-dimensional average-shape atlas of the honeybee brain and its applications. J Comp Neurol 492:1–19. doi: 10.1002/cne.20644 CrossRefPubMedGoogle Scholar
  72. 72.
    Stocker RF, Singh RN, Schorderet M, Siddiqi O (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232:237–248. doi: 10.1007/BF00213783 CrossRefPubMedGoogle Scholar
  73. 73.
    Laissue PP, Reiter C, Hiesinger PR et al (1999) Three–dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405:543–552, doi: 10.1002/(SICI)1096-9861(19990322)405:4<543::AID-CNE7>3.0.CO;2-A [pii]CrossRefPubMedGoogle Scholar
  74. 74.
    Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547. doi: 10.1016/j.cub.2005.07.034 CrossRefPubMedGoogle Scholar
  75. 75.
    Tanaka NK, Endo K, Ito K (2012) Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J Comp Neurol 520:4067–4130. doi: 10.1002/cne.23142 CrossRefPubMedGoogle Scholar
  76. 76.
    Bestvater F, Spiess E, Stobrawa G et al (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115. doi: 10.1046/j.1365-2818.2002.01074.x CrossRefPubMedGoogle Scholar
  77. 77.
    Albota MA, Xu C, Webb WW (1998) Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37:7352. doi: 10.1364/AO.37.007352 CrossRefPubMedGoogle Scholar
  78. 78.
    Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738. doi: 10.1016/S0006-3495(04)74241-1 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839. doi: 10.1016/j.neuron.2006.05.019 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Center for Mind/Brain SciencesUniversity of TrentoRoveretoItaly
  2. 2.Department of PhysicsUniversity of TrentoTrentoItaly

Personalised recommendations