Skip to main content

Noninvasive Imaging Technologies in Primates

Part of the Neuromethods book series (NM,volume 122)

Abstract

The study of neuroanatomical and functional asymmetries has been the topic of considerable scientific debate and research. While early research primarily focused on neuropsychological investigations of clinical populations and analysis of postmortem materials, with the advent of noninvasive neuroimaging, it has afforded many advantages for comparative studies in primates. Here, we describe the various methods that have been used to quantify neuroanatomical and functional asymmetries in nonhuman primates and the results that have emerged from these studies. We further discuss the limitations of some of these methods and offer suggestions for future research.

Key words

  • Asymmetry
  • Neuroanatomy
  • Functional asymmetries
  • Primates
  • Magnetic resonance imaging (MRI)
  • Positron emission tomography (PET)
  • Resting-state functional MRI (R-fMRI)
  • Diffusion tensor imaging (DTI)

This is a preview of subscription content, access via your institution.

Buying options

Protocol
EUR   44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   128.39
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   170.49
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   241.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sherwood CC, Baurernfeind AL, Bianchi S, Raghanti MA, Hof PR (2012) Human brain evolution writ large and small. In: Hofman MA, Falk D (eds) Progress in brain research. Elsevier, New York

    Google Scholar 

  2. Deacon TW (1997) The symbolic species: the coevolution of language and the brain. W. W. Norton and Company, New York

    Google Scholar 

  3. Rilling JK (2006) Human and non-human primate brains: are they allometrically scaled versions of the same design? Evol Anthropol 15(2):65–77

    CrossRef  Google Scholar 

  4. Schoenemann PT (2006) Evolution of size and functional areas of the human brain. Annu Rev Anthropol 35:379–406

    CrossRef  Google Scholar 

  5. Heilbronner PL, Holloway RL (1988) Anatomical brain asymmetries in New World and Old World monkeys. Stages of temporal lobe development in primate evolution. Am J Phys Anthropol 76:39–48

    CrossRef  Google Scholar 

  6. Heilbronner PL, Holloway RL (1989) Anatomical brain asymmetry in monkeys: Frontal, temporoparietal, and limbic cortex in Macaca. Am J Phys Anthropol 80:203–211

    CrossRef  Google Scholar 

  7. Falk D, Cheverud J, Vannier MW, Conroy GC (1986) Advanced computer-graphics technology reveals cortical asymmetry in endocasts of rhesus-monkeys. Folia Primatol 46:98–103

    CrossRef  CAS  PubMed  Google Scholar 

  8. Falk D, Hildebolt C, Cheverud J, Vannier M, Helmkamp RC, Konigsberg L (1990) Cortical asymmetries in the frontal lobe of rhesus monkeys (Macaca mulatta). Brain Res 512:40–45

    CrossRef  CAS  PubMed  Google Scholar 

  9. LeMay M (1976) Morphological cerebral asymmetries of modern man, fossil man and nonhuman primates. Ann N Y Acad Sci 280:349–366

    CrossRef  CAS  PubMed  Google Scholar 

  10. LeMay M (1977) Asymmetries of the skull and handedness. J Neurol Sci 32:243–253

    CrossRef  CAS  PubMed  Google Scholar 

  11. LeMay M (1982) Morphological aspects of human brain asymmetry: an evolutionary perspective. Trends Neurosci 5:273–275

    CrossRef  Google Scholar 

  12. LeMay M (1985) Asymmetries of the brains and skulls of nonhuman primates. In: Glick SD (ed) Cerebral lateralization in nonhuman species. Academic, New York, pp 223–245

    Google Scholar 

  13. LeMay M, Geschwind N (1975) Hemispheric differences in the brains of great apes. Brain Behav Evol 11:48–52

    CrossRef  CAS  PubMed  Google Scholar 

  14. Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36(5):275–284

    CrossRef  CAS  PubMed  Google Scholar 

  15. Hecht E, Stout D (2015) Techniques for studying brain structure and function. In: Bruner E (ed) Human paleoneurology. Springer International Publishing, Switzerland

    Google Scholar 

  16. Gannon PJ, Kheck N, Hof PR (2008) Leftward interhemispheric asymmetry of macaque monkey temporal lobe language area homolog is evident at the cytoarchitectural, but not gross anatomic level. Brain Res 1199:62–73

    CrossRef  CAS  PubMed  Google Scholar 

  17. Yeni-Komshian G, Benson D (1976) Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees and monkeys. Science 192:387–389

    CrossRef  CAS  PubMed  Google Scholar 

  18. Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee Planum Temporale: humanlike pattern of Wernicke’s language area homolog. Science 279:220–222

    CrossRef  CAS  PubMed  Google Scholar 

  19. Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominids using magnetic resonance imaging. J Hum Evol 38:317–332

    CrossRef  CAS  PubMed  Google Scholar 

  20. Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three dimensional reconstructions of the magnetic resonance scans of human and ape brains. J Hum Evol 32:375–388

    CrossRef  CAS  PubMed  Google Scholar 

  21. Semendeferi K, Lu A, Schenker NM, Damasio H (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5(3):272–276

    CrossRef  CAS  PubMed  Google Scholar 

  22. McBride T, Arnold SE, Gur RC (1999) A comparative volumetric analysis of the prefrontal cortex in human and baboon MRI. Brain Behav Evol 54:159–166

    CrossRef  CAS  PubMed  Google Scholar 

  23. Rilling JK, Insel TR (1998) Evolution of the cerebellum in primates: differences in relative volume among monkeys, apes and humans. Brain Behav Evol 52:308–314

    CrossRef  CAS  PubMed  Google Scholar 

  24. Fears SC, Scheibel K, Abaryan Z, Lee C, Service SK, Jorgensen MJ, Fairbanks LA, Cantor RM, Freimer NB, Woods RP (2011) Anatomic brain asymmetry in vervet monkeys. PLos One 6(12):e28243

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pilcher D, Hammock L, Hopkins WD (2001) Cerebral volume asymmetries in non-human primates as revealed by magnetic resonance imaging. Laterality 6:165–180

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hopkins WD, Misiura M, Reamer LA, Schaeffer JA, Mareno MC, Schapiro SJ (2014) Poor receptive joint attention skills are associated with atypical grey matter asymmetry in the posterior superior temporal gyrus of chimpanzees (Pan troglodytes). Front Cogn 5(7):1–8

    Google Scholar 

  27. Cantalupo C, Hopkins WD (2001) Asymmetric Broca’s area in great apes. Nature 414:505

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keller SS, Roberts N, Hopkins WD (2009) A comparative magnetic resonance imaging study of the anatomy, variability and asymmetry of Broca’s area in the human and chimpanzee brain. J Neurosci 29:14607–14616

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phillips K, Sherwood CC (2005) Primary motor cortex asymmetry correlates with handedness in capuchin monkeys (Cebus apella). Behav Neurosci 119:1701–1704

    CrossRef  PubMed  Google Scholar 

  30. Hopkins WD, Cantalupo C (2004) Handedness in chimpanzees is associated with asymmetries in the primary motor but not with homologous language areas. Behav Neurosci 118:1176–1183

    CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Hopkins WD, Russell JL, Cantalupo C (2007) Neuroanatomical correlates of handedness for tool use in chimpanzees (Pan troglodytes): implication for theories on the evolution of language. Psychol Sci 18(11):971–977

    CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Cantalupo C, Freeman HD, Rodes W, Hopkins WD (2008) Handedness for tool use correlates with cerebellar asymmetries in chimpanzees (Pan troglodytes). Behav Neurosci 122:191–198

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Taglialatela JP, Cantalupo C, Hopkins WD (2006) Gesture handedness predicts asymmetry in the chimpanzee inferior frontal gyrus. Neuroreport 17(9):923–927

    CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Blatchley B, Hopkins WD (2010) Subgenual cingulate cortex and personality in chimpanzees (Pan troglodytes). Cognitive, Affective, & Behavioral Neuroscience 10(3):414–421

    Google Scholar 

  35. Hopkins WD, Taglialatela JP (2012) Initiation of joint attention is associated with morphometric variation in the anterior cingulate cortex of chimpanzees (Pan troglodytes). Am J Primatol 75(5):441–449

    CrossRef  Google Scholar 

  36. Hopkins WD, Russell JL, Schaeffer JA (2012) The neural and cognitive correlates of aimed throwing in chimpanzees: a magnetic resonance image and behavioural study on a unique form of social tool use. Philos Trans R Soc B Biol Sci 367(1585):37–47

    CrossRef  Google Scholar 

  37. Lyn HL, Pierre P, Bennett AJ, Fears SC, Woods RP, Hopkins WD (2011) Planum temporale grey matter asymmetries in chimpanzees (Pan troglodytes), vervet (Chlorocebus aethiops sabaeus), rhesus (Macaca mulatta) and bonnet (Macaca radiata) monkeys. Neuropsychologia 49:2004–2012

    CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Shapleske J, Rossell SL, Woodruff PW, David AS (1999) The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance. Brain Res Rev 29:26–49

    CrossRef  CAS  PubMed  Google Scholar 

  39. Josse G, Mazoyer B, Crivello F, Tzourio-Mazoyer N (2003) Left planum temporale: an anatomical marker of left hemispheric specialization for language comprehension. Cogn Brain Res 18:1–14

    CrossRef  Google Scholar 

  40. Hopkins WD, Pilcher DL, MacGregor L (2000) Sylvian fissure length asymmetries in primates revisited: a comparative MRI study. Brain Behav Evol 56:293–299

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cantalupo C, Pilcher D, Hopkins WD (2003) Are planum temporale and sylvian fissure asymmetries directly related? A MRI study in great apes. Neuropsychologia 41:1975–1981

    CrossRef  PubMed  Google Scholar 

  42. Liu ST, Phillips KA (2009) Sylvian fissure asymmetries in capuchin monkeys (Cebus apella). Laterality 14(3):217–227

    CrossRef  CAS  PubMed  Google Scholar 

  43. Ide A, Rodriguez E, Zaidel E, Aboitiz F (1996) Bifurcation patterns in the human sylvian fissure: hemispheric and sex differences. Cereb Cortex 6(5):717–725

    CrossRef  CAS  PubMed  Google Scholar 

  44. Gilissen E (1992) The neocortical sulci of the capuchin monkey (Cebus): evidence for asymmetry in the sylvian sulcus and comparison with other primates. C R Acad Sci III 314:165–170

    Google Scholar 

  45. Gilissen E (2001) Structural symmetries and asymmetries in human and chimpanzee brains. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 187–215

    CrossRef  Google Scholar 

  46. Kochunov PV, Mangin JF, Coyle T, Lancaster JL, Thompson P, Riviere D, Cointepas Y, Regis J, Schlosser A, Royall DR, Zilles K, Mazziotta J, Toga AW, Fox PT (2005) Age-related morphology trends in cortical sulci. Hum Brain Mapp 26(3):210–220

    CrossRef  PubMed  Google Scholar 

  47. Autrey MM, Reame LA, Mareno MC, Sherwood CC, Herndon JG, Preuss TM, Schapiro SJ, Hopkins WD (2014) Age-related effects in the neocortical organization of chimpanzees: gray and white matter volume, cortical thickness, and gyrification. Neuroimage 101:59–67

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Kochunov PV, Glahn DC, Fox PT, Lancaster JL, Saleem KS, Shelledy W, Zilles K, Thompson PM, Coulon O, Mangin JF, Blangero J, Rogers J (2010) Genetics of primary cerebral gyrification: heritability of length, depth and area of primary sulci in an extended pedigree of Papio baboons. Neuroimage 53(3):1126–1134

    Google Scholar 

  49. Rogers J, Kochunov PV, Lancaster JL, Sheeledy W, Glahn D, Blangero J, Fox PT (2007) Heritability of brain volume, surface area and shape: an MRI study in an extended pedigree of baboons. Hum Brain Mapp 28:576–583

    CrossRef  PubMed  Google Scholar 

  50. Rogers J, Kochunov PV, Zilles K, Shelledy W, Lancaster JL, Thompson P, Duggirala R, Blangero J, Fox PT, Glahn DC (2010) On the genetic architecture of cortical folding and brain volume in primates. Neuroimage 53:1103–1108

    CrossRef  PubMed  PubMed Central  Google Scholar 

  51. Hopkins WD, Meguerditchian A, Coulon O, Bogart SL, Mangin JF, Sherwood CC, Grabowski MW, Bennett AJ, Pierre PJ, Fears SC, Woods RP, Hof PR, Vauclair J (2014) Evolution of the central sulcus morphology in primates. Brain Behav Evol 84:1930

    CrossRef  Google Scholar 

  52. Hopkins WD, Coulon O, Mangin JF (2010) Observer-independent characterization of sulcal landmarks and depth asymmetry in the central sulcus of the chimpanzee brain. Neuroscience 171:544–551

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cykowski MD, Coulon O, Kochunov PV, Amunts K, Lancaster JL, Laird AR, Glahn C, Fox PT (2008) The central sulcus: an observer-independent characterization of sulcal landmarks and depth asymmetry. Cereb Cortex 18:1999–2009

    CrossRef  PubMed  Google Scholar 

  54. Bogart SL, Mangin JF, Schapiro SJ, Reamer L, Bennett AJ, Pierre PJ, Hopkins WD (2012) Cortical sulci asymmetries in chimpanzees and macaques: a new look at an old idea. Neuroimage 61:533–541

    CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Kurth F, Gaser C, Luders E (2015) A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping. Nat Protoc 10(2):293–304

    CrossRef  CAS  PubMed  Google Scholar 

  56. Hopkins WD, Taglialatela JP, Meguerditchian A, Nir T, Schenker NM, Sherwood CC (2008) Gray matter asymmetries in chimpanzees as revealed by voxel-based morphometry. Neuroimage 42(2):491–497

    CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Hopkins WD, Taglialatela JP, Nir T, Schenker NM, Sherwood CC (2010) A voxel-based morphometry analysis of white matter asymmetries in chimpanzees (Pan troglodytes). Brain Behav Evol 76(2):93–100

    CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Keller SS, Crow TJ, Foundas AL, Amunts K, Roberts N (2009) Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain Lang 109:29–48

    CrossRef  PubMed  Google Scholar 

  59. Keller SS, Highley JR, Garcia-Finana M, Sluming V, Rezaie R, Roberts N (2007) Sulcal variability, stereological measurement and asymmetry of Broca’s area on MR images. J Anat 211:534–555

    PubMed  PubMed Central  Google Scholar 

  60. Keller SS, Deppe M, Herbin M, Gilissen E (2012) Variabilty and asymmetry of the suclal contours defining Broca’s area homologue in the chimpanzee brain. J Comp Neurol 520:1165–1180

    CrossRef  PubMed  Google Scholar 

  61. Sherwood CC, Broadfield DC, Holloway RL, Gannon PJ, Hof PR (2003) Variability of Broca’s area homologue in great apes: implication for language evolution. Anat Rec 217A:276–285

    CrossRef  Google Scholar 

  62. Schenker NM, Hopkins WD, Spocter MA, Garrison AR, Stimpson CD, Erwin JM, Hof PR, Sherwood CC (2010) Broca’s area homologue in chimpanzees (Pan troglodytes): probabilistic mapping, asymmetry, and comparison to humans. Cereb Cortex 20:730–742

    CrossRef  PubMed  Google Scholar 

  63. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HB, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412(2):319–341

    CrossRef  CAS  PubMed  Google Scholar 

  64. Horwitz B, Amunts K, Bhattacharyya R, PAtkin D, Jeffries K, Zilles K, Braun AR (1999) Activation of Broca’s area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41(14):1868–1876

    CrossRef  Google Scholar 

  65. Paus T, Tomaiuolo F, Otaky N, MacDonald D, Petrides M, Atllas J, Morris R, Evans AC (1996) Human cingulate and paracingulate sulci: attern, variabilty, asymmetry and probabilstic map. Cereb Cortex 6:207–214

    CrossRef  CAS  PubMed  Google Scholar 

  66. Tomaiuolo F, MacDonald JD, Caramanos Z, Posner G, Chiavaras M, Evans AC, Petrides M (1999) Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur J Neurosci 11:3033–3046

    CrossRef  CAS  PubMed  Google Scholar 

  67. Hopkins WD, Taglialatela JP (2011) The role of Broca’s area in socio-communicative processes in chimpanzees. In: Ferrari P, de Waal F (eds) The primate mind: built to connect with other minds. Harvard University Press, Cambridge

    Google Scholar 

  68. Spocter MA, Hopkins WD, Garrison AR, Stimpson CD, Erwin JM, Hof PR, Sherwood CS (2010) Wernicke’s area homolog in chimpanzees (Pan troglodytes): probabilstic mapping, asymmetry and comparison with humans. Proc R Soc B Biol Sci 277:2165–2174

    CrossRef  Google Scholar 

  69. Toga AW, Thompson M (2003) Mapping brain asymmetry. Nature 4:37–48

    CAS  Google Scholar 

  70. Singh M, Nagashima M, TInoue Y (2004) Anatomical variations of occpital bone impressions for dural venous sinuses around the torcular Herophili, with special reference to the consideration of clinical significance. Surg Radiol Anat 26:480–487

    CrossRef  CAS  PubMed  Google Scholar 

  71. Williams NA, Close JP, Giouzeli M, Crow TJ (2006) Accelerated evolution of Protocadherin 11X/Y: a candidate gene-pair for cerebral asymmetry and language. Am J Med Genet B Neuropsychiatr Genet 141B:623–633

    CrossRef  CAS  PubMed  Google Scholar 

  72. Cain DP, Wada JA (1979) An anatomical asymmetry in the baboon brain. Brain Behav Evol 16:222–226

    CrossRef  CAS  PubMed  Google Scholar 

  73. Holloway RL, De La Coste-Lareymondie MC (1982) Brain endocast asymmetry in pongids and hominids: Some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:101–110

    CrossRef  CAS  PubMed  Google Scholar 

  74. Balzeau A, Gilissen E (2010) Endocranial shape asymmetries in Pan panuscus, Pan troglodytes, and Gorilla gorilla assessed via skull based landmark analysis. J Hum Evol 59:54–69

    CrossRef  PubMed  Google Scholar 

  75. Balzeau A, Holloway RL, Grimaud-Herve D (2012) Variations and asymmetries in regional brain surface in the genus Homo. J Hum Evol 62:696–706

    CrossRef  PubMed  Google Scholar 

  76. Barrick TR, Mackay CE, Prima S, Maes F, Vandermeulen D, Crow TJ, Roberts N (2005) Automatic analysis of cerebral asymmetry: an exploratory study of the relationship between torque and planum temporale asymmetry. Neuroimage 24:678–691

    CrossRef  PubMed  Google Scholar 

  77. Narr KL, Bilder RM, Luders E, Thompson PM, Woods RP, Robinson D, Szeszko PR, Dimtcheva T, Gurbani M, Toga AW (2007) Asymmetries of cortical shape: effects of handedness, sex and schizophrenia. Neuroimage 34:939–948

    CrossRef  PubMed  Google Scholar 

  78. Luders E, Gaser C, Jancke L, Schlaug G (2004) A voxel-based approach to gray matter asymmetries. Neuroimage 22:656–664

    CrossRef  CAS  PubMed  Google Scholar 

  79. Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, Taylor J, Worsley KJ, Evans AC (2001) Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 11:868–877

    CrossRef  CAS  PubMed  Google Scholar 

  80. Phillips KA, Sherwood CS (2007) Cerebral petalias and their relationship to handedness in capuchin monkeys (Cebus apella). Neuropsychologia 45:2398–2401

    CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobniak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stafano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation of FSL. Neuroimage 23(S1):208–219

    CrossRef  Google Scholar 

  82. Alexander AL, Lee JE, Lazar M, Field AS (2007) Diffusion tensor imaging of the brain. Neurotherapeutics 4(3):316–329

    CrossRef  PubMed  PubMed Central  Google Scholar 

  83. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    CrossRef  CAS  PubMed  Google Scholar 

  84. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhang X, Zhao T, Hu X, Behrens T (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    CrossRef  CAS  PubMed  Google Scholar 

  85. Rilling JK, Glasser MF, Jbabdi S, Andersson J, Preuss TM (2012) Continuity, divergence and the evolution of brain language pathways. Front Evol Neurosci 3(11):1–6

    Google Scholar 

  86. Hecht EE, Gutman DA, Bradley BA, Preuss TM, Stout D (2015) Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage 108:124–137

    CrossRef  PubMed  Google Scholar 

  87. Li L, Preuss TM, Rilling JK, Hopkins WD, Glasser MF, Kumar B, Nana R, Zhang X, Hu X (2009) Chimpanzee pre-central corticospinal system asymmetry and handedness: a diffusion magnetic resonance imaging study. PLos One 5(9):e12886

    CrossRef  CAS  Google Scholar 

  88. Phillips KA, Schaeffer J, Barrett E, Hopkins WD (2013) Performance asymmetries in tool use are associated with corpus callosum integrity in chimpanzees (Pan troglodytes): a diffusion tensor imaging study. Behav Neurosci 127(1):106–113. doi:10.1037/a0031089

    CrossRef  PubMed  PubMed Central  Google Scholar 

  89. Iturria-Medina Y, Fernández AP, Morris DM, Canales-Rodríguez EJ, Haroon HA, Pentón LG, Augath M, García LG, Logothetis N, Parker GJM, Melie-García L (2011) Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex 21:56–67

    CrossRef  PubMed  Google Scholar 

  90. Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50(5):1077–1088

    CrossRef  CAS  PubMed  Google Scholar 

  91. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Mathews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757

    CrossRef  CAS  PubMed  Google Scholar 

  92. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, MacKay CE, Watkins KE, Ciccarelli O, Cader MZ, Mathews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    CrossRef  PubMed  Google Scholar 

  93. Biswal BB, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    CrossRef  CAS  PubMed  Google Scholar 

  94. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14

    CrossRef  CAS  PubMed  Google Scholar 

  95. Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. Neuroimage 102:1091–1096

    CrossRef  Google Scholar 

  96. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258

    CrossRef  CAS  PubMed  Google Scholar 

  97. Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD (2000) Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12(5):582–587

    CrossRef  CAS  PubMed  Google Scholar 

  98. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Fillippini N, Watkins KE, Toro R, Laird AR, Beckman CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106(31):13040–13045

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  99. Belcher AM, Yen CC, Stepp H, Gu H, Lu H, Yang Y, Silva AC, Stein EA (2013) Large-scale networks in the awake, truly resting marmoset monkey. J Neurosci 33:16796–16804

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hutchison RM, Leung LS, Mirsaattari SM, Gati JS, Menon RS, Everling S (2011) Resting-state networks in the macaque at 7T. Neuroimage 56:1546–1555

    CrossRef  PubMed  Google Scholar 

  101. Hutchison RW, Culham JC, Flanagan JR, Everling S, Gallivan JP (2015) Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI. Neuroimage 116:10–29

    CrossRef  PubMed  Google Scholar 

  102. Vincent JL, Patel GH, Fox MD, Synder AZ, Baker JT, Van Essen DC, Zempel JM, Synder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    CrossRef  CAS  PubMed  Google Scholar 

  103. Mantini D, Gerits A, Nelissen K, Durand J-B, Joly O, Simone L, Sawamura H, Wardak C, Orban GA, Buckner RL, Vanduffel W (2011) Default mode of brain function in monkeys. J Neurosci 31:12954–12962

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wey HY, Phillips KA, McKay DR, Laird AR, Kochunov P, Davis MD, Glahn DC, Duong TQ, Fox PT (2014) Multi-region hemispheric specialization differentiates human from nonhuman primate brain function. Brain Struct Funct 219:2187–2194

    CrossRef  PubMed  Google Scholar 

  105. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent components analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013

    CrossRef  PubMed  PubMed Central  Google Scholar 

  106. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103(37):13848–13853

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu JV, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC (2013) fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. Neuroimage 78:186–195

    CrossRef  PubMed  PubMed Central  Google Scholar 

  108. Murphy K, Birn RM, Bandettini PA (2013) Resting-state fMRI confounds and cleanup. Neuroimage 80:349–359

    CrossRef  PubMed  PubMed Central  Google Scholar 

  109. Teichert T, Grinband J, Hirsch J, Ferrera VP (2010) Effects of heartbeat and respiration on macaque fMRI: implications for functional connectivity. Neuropsychologia 48:1886–1894

    CrossRef  PubMed  Google Scholar 

  110. Goense JB, Whittingstall K, Logothetis NK (2010) Functional magnetic resonance imaging of awake behaving macaques. Methods 50:178–188

    CrossRef  CAS  PubMed  Google Scholar 

  111. Andersen AH, Zhang Z, Barber T, Rayens WS, Zhang J, Grondin R, Hardy P, Gerhardt GA, Gash DM (2002) Functional MRI studies in awake rhesus monkeys: methodological and analytical strategies. Methods 118:141–152

    Google Scholar 

  112. Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2:555–562

    CrossRef  CAS  PubMed  Google Scholar 

  113. van den Heuvel MP, Hilleke E, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534

    CrossRef  PubMed  CAS  Google Scholar 

  114. Margulies DS, Bottger J, Long X, Lv Y, Kelly C, Schafer A, Goldhahn D, Abbushi A, Milham MP, Lohmann G, Villringer A (2010) Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA 23:289–307

    CrossRef  PubMed  Google Scholar 

  115. Hutchison RW, Everling S (2012) Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations. Front Neuroanat 6:20

    CrossRef  Google Scholar 

  116. Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, Bremmer JD, Votaw JR (2007) A comparison of resting-state brain activity in humans and chimpanzees. Proc Natl Acad Sci U S A 104(43):17146–17151

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kojima T, Onoe H, Hikosaka K, Tsutsui KI, Tsukada H, Watanabe M (2009) Default mode of brain activity demonstrated by positron emission tomography imaging in awake monkeys: higher rest-related than working memory-related activity in medial cortical areas. J Neurosci 29(46):14463–14471

    CrossRef  CAS  PubMed  Google Scholar 

  118. Barks SK, Parr LA, Rilling JK (2015) The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans. Cereb Cortex 25:538–544

    CrossRef  PubMed  Google Scholar 

  119. Parr LA, Hecht E, Barks SK, Preuss TM, Votaw JR (2009) Face processing in the chimpanzee brain. Curr Biol 19:50–53

    CrossRef  CAS  PubMed  Google Scholar 

  120. Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2008) Communicative signaling activates “Broca’s” homolog in chimpanzees. Curr Biol 18:343–348

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  121. Taglialatela JP, Russell JL, Schaeffer JA, Hopkins WD (2009) Visualizing vocal perception in the chimpanzee brain. Cereb Cortex 19(5):1151–1157

    CrossRef  PubMed  Google Scholar 

  122. Gil-da-Costa R, Martin A, Lopes MA, Munoz M, Fritz JB, Braun AR (2006) Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nat Neurosci 9(8):1064–1070

    CrossRef  CAS  PubMed  Google Scholar 

  123. Poremba A, Malloy M, Saunders RC, Carson RE, Herscovitch P, Mishkin M (2004) Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature 427:448–451

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported in part by NIH grants NS-42867, NS-73134, HD-38051, and HD-56232 to W.D.H. and NS-70717 to K.A.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Hopkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hopkins, W.D., Phillips, K.A. (2017). Noninvasive Imaging Technologies in Primates. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols