Skip to main content

Experimental and Theoretical Methods to Approach the Study of Vascular Patterning in the Plant Shoot

  • Protocol
  • First Online:
Xylem

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1544))

  • 2112 Accesses

Abstract

The plant vascular system provides transport and mechanical support functions that are essential for suitable plant growth and development. In Arabidopsis thaliana (Arabidopsis), the vascular tissues at the shoot inflorescence stems are disposed in organized vascular bundles. The vascular patterning emergence and development within the shoot inflorescence stems is under the control of plant growth regulators (De Rybel et al., Nat Rev Mol Cell Biol 17:30–40, 2016; Caño-Delgado et al., Annu Rev Cell Dev Biol 26:605–637, 2010). By using a combined approach of experimental methods for vascular tissues visualization and quantification together with theoretical methods through mathematical and computational modeling, we have reported that auxin transport and brassinosteroid signaling play complementary roles in the formation of the periodic vascular patterning in the shoot (Ibañes et al., Proc Natl Acad Sci U S A 106:13630–13635, 2009; Fàbregas et al., Plant Signal Behav 5:903–906, 2010; Fàbregas et al., PLoS Genet 11:e1005183, 2015). Here, we report the methodology for the interdisciplinary analysis of the shoot vascular patterning in the plant model Arabidopsis into a handle procedure for visualization, quantification, data analysis, and modeling implementation.

Norma Fàbregas and Pau Formosa-Jordan contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Rybel B, Mahonen AP, Helariutta Y, Weijers D (2016) Plant vascular development: from early specification to differentiation. Nat Rev Mol Cell Biol 17(1):30–40. doi:10.1038/nrm.2015.6

    Article  PubMed  Google Scholar 

  2. Caño-Delgado A, Lee JY, Demura T (2010) Regulatory mechanisms for specification and patterning of plant vascular tissues. Annu Rev Cell Dev Biol 26:605–637. doi:10.1146/annurev-cellbio-100109-104107

    Article  PubMed  Google Scholar 

  3. Essau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York

    Google Scholar 

  4. Essau K (1965) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  5. Jurgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20(14):3609–3616. doi:10.1093/emboj/20.14.3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99(5):463–472

    Article  CAS  PubMed  Google Scholar 

  7. Bishopp A, Lehesranta S, Vaten A, Help H, El-Showk S, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21(11):927–932. doi:10.1016/j.cub.2011.04.049

    Article  CAS  PubMed  Google Scholar 

  8. Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benkova E, Mahonen AP, Helariutta Y (2011) A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol 21(11):917–926. doi:10.1016/j.cub.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  9. Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66(4):1113–1121. doi:10.1093/jxb/eru534

    Article  CAS  PubMed  Google Scholar 

  10. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433(7021):39–44. doi:10.1038/nature03184

    Article  CAS  PubMed  Google Scholar 

  11. Grieneisen VA, Xu J, Maree AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013. doi:10.1038/nature06215

    Article  CAS  PubMed  Google Scholar 

  12. Ibañes M, Fàbregas N, Chory J, Caño-Delgado AI (2009) Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proc Natl Acad Sci U S A 106(32):13630–13635. doi:10.1073/pnas.0906416106

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126(13):2979–2991

    CAS  PubMed  Google Scholar 

  14. Galweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282(5397):2226–2230

    Article  CAS  PubMed  Google Scholar 

  15. Rubery PH (1977) The specificity of carrier-mediated auxin transport by suspension-cultured crown gall cells. Planta 135(3):275–283. doi:10.1007/BF00384900

    Article  CAS  PubMed  Google Scholar 

  16. Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118(2):101–121. doi:10.1007/BF00388387

    Article  CAS  PubMed  Google Scholar 

  17. Leyser O (1999) Plant hormones: ins and outs of auxin transport. Curr Biol 9(1):R8–R10

    Article  CAS  PubMed  Google Scholar 

  18. Fàbregas N, Formosa-Jordan P, Confraria A, Siligato R, Alonso JM, Swarup R, Bennett MJ, Mahonen AP, Caño-Delgado AI, Ibañes M (2015) Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana. PLoS Genet 11(4):e1005183. doi:10.1371/journal.pgen.1005183

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sahlin P, Soderberg B, Jönsson H (2009) Regulated transport as a mechanism for pattern generation: capabilities for phyllotaxis and beyond. J Theor Biol 258(1):60–70. doi:10.1016/j.jtbi.2009.01.019

    Article  CAS  PubMed  Google Scholar 

  20. Bayer EM, Smith RS, Mandel T, Nakayama N, Sauer M, Prusinkiewicz P, Kuhlemeier C (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23(3):373–384. doi:10.1101/gad.497009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinohl V, Merks RM, Govaerts W, Friml J (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447. doi:10.1038/msb.2010.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Berkel K, de Boer RJ, Scheres B, ten Tusscher K (2013) Polar auxin transport: models and mechanisms. Development 140(11):2253–2268. doi:10.1242/dev.079111

    Article  PubMed  Google Scholar 

  23. Abley K, De Reuille PB, Strutt D, Bangham A, Prusinkiewicz P, Maree AF, Grieneisen VA, Coen E (2013) An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140(10):2061–2074. doi:10.1242/dev.062984

    Article  CAS  PubMed  Google Scholar 

  24. Cieslak M, Runions A, Prusinkiewicz P (2015) Auxin-driven patterning with unidirectional fluxes. J Exp Bot 66(16):5083–5102. doi:10.1093/jxb/erv262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rutschow HL, Baskin TI, Kramer EM (2011) Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol 155(4):1817–1826. doi:10.1104/pp.110.168187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103(5):1633–1638. doi:10.1073/pnas.0509839103

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103(5):1301–1306. doi:10.1073/pnas.0510457103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kramer EM, Frazer NL, Baskin TI (2007) Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana. J Exp Bot 58(11):3005–3015. doi:10.1093/jxb/erm155

    Article  CAS  PubMed  Google Scholar 

  29. Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7(11):1057–1065. doi:10.1038/ncb1316

    Article  CAS  PubMed  Google Scholar 

  30. Goldsmith MH, Goldsmith TH, Martin MH (1981) Mathematical analysis of the chemosmotic polar diffusion of auxin through plant tissues. Proc Natl Acad Sci U S A 78(2):976–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kramer EM (2004) PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9(12):578–582. doi:10.1016/j.tplants.2004.10.010

    Article  CAS  PubMed  Google Scholar 

  32. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20(8):1015–1027. doi:10.1101/gad.1402406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D (2015) Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12(3):207–210. doi:10.1038/nmeth.3279, 202 p following 210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bozorg B, Krupinski P, Jönsson H (2014) Stress and strain provide positional and directional cues in development. PLoS Comput Biol 10(1):e1003410. doi:10.1371/journal.pcbi.1003410

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kang J, Tang J, Donnelly P, Dengler N (2003) Primary vascular pattern and expression of ATHB-8 in shoots of Arabidopsis. New Phytol 158(3):443–454. doi:10.1046/j.1469-8137.2003.00769.x

    Article  CAS  Google Scholar 

  36. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1993) Numerical recipes in FORTRAN; the art of scientific computing. Cambridge University Press, New York

    Google Scholar 

  37. Cross M, Greenside H (2009) Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press, New York

    Book  Google Scholar 

  38. Fàbregas N, Ibañes M, Caño-Delgado AI (2010) A systems biology approach to dissect the contribution of brassinosteroid and auxin hormones to vascular patterning in the shoot of Arabidopsis thaliana. Plant Signal Behav 5(7):903–906

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D” 2016–2019 (SEV‐2015‐0533)”. N.F. is funded by “Fundación RENTA CORPORACIÓN” charity in A.C.-D. Lab. P.F.-J. acknowledges the postdoctoral fellowship provided by the Herchel Smith Foundation. P.F.-J and M.I. acknowledge support from the Spanish Ministry of Economy and Competitiveness through grants FIS2012-37655-C02-02 and FIS2015-66503-C3-3-P and to the Generalitat de Catalunya through Projecte Consolidat 2014 SGR 878. A.I.C.-D. lab is funded by a BIO2013-43873 grant from the Spanish Ministry of Economy and Competitiveness, and the European Research Council by the ERC Consolidator Grant (ERC-2015-CoG—683163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana I. Caño-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fàbregas, N., Formosa-Jordan, P., Ibañes, M., Caño-Delgado, A.I. (2017). Experimental and Theoretical Methods to Approach the Study of Vascular Patterning in the Plant Shoot. In: de Lucas, M., Etchhells, J. (eds) Xylem. Methods in Molecular Biology, vol 1544. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6722-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6722-3_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6720-9

  • Online ISBN: 978-1-4939-6722-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics