Skip to main content

Targeting Promoter-Associated Noncoding RNA In Vivo

  • Protocol
  • First Online:
Promoter Associated RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1543))

Abstract

There are many classes of noncoding RNAs (ncRNAs), with wide-ranging functionalities (e.g., RNA editing, mediation of mRNA splicing, ribosomal function). MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) are implicated in a wide variety of cellular processes, including the regulation of gene expression. Incorrect expression or mutation of lncRNAs has been reported to be associated with several disease conditions, such a malignant transformation in humans. Importantly, pivotal players in tumorigenesis and cancer progression, such as c-Myc, may be regulated by lncRNA at promoter level. The function of lncRNA can be reduced with antisense oligonucleotides that sequester or degrade mature lncRNAs. In alternative, lncRNA transcription can be blocked by small interference RNA (RNAi), which had acquired, recently, broad interested in clinical applications. In vivo-jetPEI™ is a linear polyethylenimine mediating nucleic acid (DNA, shRNA, siRNA, oligonucelotides) delivery with high efficiency. Different in vivo delivery routes have been validated: intravenous (IV), intraperitoneal (IP), intratumoral, subcutaneous, topical, and intrathecal. High levels of nucleic acid delivery are achieved into a broad range of tissues, such as lung, salivary glands, heart, spleen, liver, and prostate upon systemic administration. In addition, in vivo-jetPEI™ is also an efficient carrier for local gene and siRNA delivery such as intratumoral or topical application on the skin. After systemic injection, siRNA can be detected and the levels can be validated in target tissues by qRT-PCR. Targeting promoter-associated lncRNAs with siRNAs (small interfering RNAs) in vivo is becoming an exciting breakthrough for the treatment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts TC, Wood MJA (2013) Therapeutic targeting of non-coding RNAs. Biochemical Society Essays Biochem 54:127–145

    Article  CAS  Google Scholar 

  2. Fire A, Xu S, Montgomery MK, Kostas SA et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  3. Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2(12):711–719

    Article  CAS  PubMed  Google Scholar 

  5. Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178

    Article  CAS  PubMed  Google Scholar 

  6. Czauderna F, Fechtner M, Dames S et al (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31(11):2705–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184

    Article  CAS  PubMed  Google Scholar 

  8. Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92(16):7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dheur S, Dias N, van Aerschot A et al (1999) Polyethylenimine but not cationic lipid improves antisense activity of 3′-capped phosphodiester oligonucleotides. Antisense Nucleic Acid Drug Dev 9(6):515–525

    Article  CAS  PubMed  Google Scholar 

  10. Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 93(22):12349–12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goula D, Benoist C, Mantero S et al (1998) Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther 5(9):1291–1295

    Article  CAS  PubMed  Google Scholar 

  12. Zou SM, Erbacher P, Remy JS, Behr JP (2000) Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2(2):128–134

    Article  CAS  PubMed  Google Scholar 

  13. Demeneix B, Behr J, Boussif O et al (1998) Gene transfer with lipospermines and polyethylenimines. Adv Drug Deliv Rev 30(1–3):85–95

    CAS  PubMed  Google Scholar 

  14. Brunner S, Furtbauer E, Sauer T et al (2002) Overcoming the nuclear barrier: cell cycle independent nonviral gene transfer with linear polyethylenimine or electroporation. Mol Ther 5(1):80–86

    Article  CAS  PubMed  Google Scholar 

  15. Ferrari S, Pettenazzo A, Garbati N et al (1999) Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim Biophys Acta 1447(2–3):219–225

    Article  CAS  PubMed  Google Scholar 

  16. Chemin I, Moradpour D, Wieland S et al (1998) Liver-directed gene transfer: a linear polyethlenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo. J Viral Hepat 5(6):369–375

    Article  CAS  PubMed  Google Scholar 

  17. Bragonzi A, Boletta A, Biffi A et al (1999) Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther 6(12):1995–2004

    Article  CAS  PubMed  Google Scholar 

  18. Lisziewicz J, Trocio J, Whitman L et al (2005) DermaVir: a novel topical vaccine for HIV/AIDS. J Invest Dermatol 124(1):160–169

    Article  CAS  PubMed  Google Scholar 

  19. Ohana P, Schachter P, Ayesh B et al (2005) Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases. J Gene Med 7(3):366–374

    Article  CAS  PubMed  Google Scholar 

  20. Goula D, Becker N, Lemkine GF et al (2000) Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes. Gene Ther 7(6):499–504

    Article  CAS  PubMed  Google Scholar 

  21. Coll JL, Chollet P, Brambilla E et al (1999) In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum Gene Ther 10(10):1659–1666

    Article  CAS  PubMed  Google Scholar 

  22. Bragonzi A, Dina G, Villa A et al (2000) Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther 7(20):1753–1760

    Article  CAS  PubMed  Google Scholar 

  23. Ouatas T, Le Mevel S, Demeneix BA, de Luze A (1998) T3-dependent physiological regulation of transcription in the Xenopus tadpole brain studied by polyethylenimine based in vivo gene transfer. Int J Dev Biol 42(8):1159–1164

    CAS  PubMed  Google Scholar 

  24. Goula D, Remy JS, Erbacher P et al (1998) Size, diffusibility and transfection performance of linear PEI/DNA complexes in the mouse central nervous system. Gene Ther 5(5):712–717

    Article  CAS  PubMed  Google Scholar 

  25. Demeneix BA, Ghorbel M, Goula D (2000) Optimizing polyethylenimine-based gene transfer into mammalian brain for analysis of promoter regulation and protein function. Methods Mol Biol 133:21–35

    CAS  PubMed  Google Scholar 

  26. Louis MH, Dutoit S, Denoux Y et al (2006) Intraperitoneal linear polyethylenimine (L-PEI)-mediated gene delivery to ovarian carcinoma nodes in mice. Cancer Gene Ther 13(4):367–374

    Article  CAS  PubMed  Google Scholar 

  27. Aoki K, Furuhata S, Hatanaka K et al (2001) Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther 8(7):508–514

    Article  CAS  PubMed  Google Scholar 

  28. Civenni G, Malek A, Albino D et al (2013) RNAi-mediated silencing of Myc transcription inhibits stem-like cell maintenance and tumorigenicity in prostate cancer. Cancer Res 73(22):6816–6827

    Article  CAS  PubMed  Google Scholar 

  29. Abdallah B, Hassan A, Benoist C et al (1996) A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Hum Gene Ther 7(16):1947–1954

    Article  CAS  PubMed  Google Scholar 

  30. Guissouma H, Dupre SM, Becker N et al (2002) Feedback on hypothalamic TRH transcription is dependent on thyroid hormone receptor N terminus. Mol Endocrinol 16(7):1652–1666

    Article  CAS  PubMed  Google Scholar 

  31. Wu K, Meyers CA, Bennett JA et al (2004) Polyethylenimine-mediated NGF gene delivery protects transected septal cholinergic neurons. Brain Res 1008(2):284–287

    Article  CAS  PubMed  Google Scholar 

  32. Lemkine GF, Mantero S, Migne C et al (2002) Preferential transfection of adult mouse neural stem cells and their immediate progeny in vivo with polyethylenimine. Mol Cell Neurosci 19(2):165–174

    Article  CAS  PubMed  Google Scholar 

  33. Lisziewicz J, Trocio J, Xu J et al (2005) Control of viral rebound through therapeutic immunization with DermaVir. AIDS 19(1):35–43

    Article  PubMed  Google Scholar 

  34. Lisziewicz J, Gabrilovich DI, Varga G et al (2001) Induction of potent human immunodeficiency virus type 1-specific T-cell-restricted immunity by genetically modified dendritic cells. J Virol 75(16):7621–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohana P et al (2004) Regulatory sequences of the H19 gene in DNA based therapy of bladder cancer. Gene Ther Mol Biol 8:181–192

    Google Scholar 

  36. Paranjpe S, Bowen WC, Bell AW et al (2007) Cell cycle effects resulting from inhibition of hepatocyte growth factor and its receptor c-Met in regenerating rat livers by RNA interference. Hepatology 45(6):1471–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liao HW, Yau KW (2007) In vivo gene delivery in the retina using polyethylenimine. Biotechniques 42(3):285–286, 288

    Article  Google Scholar 

  38. George J, Tsutsumi M (2007) siRNA-mediated knockdown of connective tissue growth factor prevents N-nitrosodimethylamine-induced hepatic fibrosis in rats. Gene Ther 14(10):790–803

    Article  CAS  PubMed  Google Scholar 

  39. Campbell M, Hanrahan F, Gobbo OL et al (2012) Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 3:849

    Article  PubMed  Google Scholar 

  40. Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Napoli S, Pastori C, Magistri M et al (2009) Promoter-specific transcriptional interference and c-myc gene silencing by siRNAs in human cells. EMBO J 28(12):1708–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pastori C, Magistri M, Napoli S et al (2010) Small RNA-directed transcriptional control: new insights into mechanisms and therapeutic applications. Cell Cycle 9(12):2353–2362

    Article  CAS  PubMed  Google Scholar 

  43. Malek A, Catapano CV, Czubayko F, Aigner A (2010) A sensitive polymerase chain reaction-based method for detection and quantification of metastasis in human xenograft mouse models. Clin Exp Metastasis 27(4):261–271

    Article  CAS  PubMed  Google Scholar 

  44. Dheur S, Saison-Behmoaras TE (2000) Polyethyleneimine-mediated transfection to improve antisense activity of 3′-capped phosphodiester oligonucleotides. Methods Enzymol 313:56–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Civenni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Civenni, G. (2017). Targeting Promoter-Associated Noncoding RNA In Vivo. In: Napoli, S. (eds) Promoter Associated RNA. Methods in Molecular Biology, vol 1543. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6716-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6716-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6714-8

  • Online ISBN: 978-1-4939-6716-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics