Skip to main content

Recurrent Cytogenetic Abnormalities in Acute Lymphoblastic Leukemia

  • Protocol
  • First Online:
Book cover Cancer Cytogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1541))

Abstract

Both B-cell and T-cell acute lymphoblastic leukemia (ALL) exhibit recurrent cytogenetic alterations, many with prognostic implications. This chapter overviews the major recurrent categories of cytogenetic abnormalities associated with ALL, with an emphasis on the detection and characterization of these cases by G-band and FISH analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL et al (eds) (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon

    Google Scholar 

  2. Bloomfield CD, Lindquist LL, Arthur D et al (1981) Chromosomal abnormalities in acute lymphoblastic leukemia. Cancer Res 41(11 Pt 2):4838–4843

    CAS  PubMed  Google Scholar 

  3. Harrison CJ (2009) Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 144(2):147–156. doi:10.1111/j.1365-2141.2008.07417.x

    Article  PubMed  Google Scholar 

  4. Moorman AV (2016) New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 101(4):407–416. doi:10.3324/haematol.2015.141101

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. doi:10.1182/blood-2016-03-643544

    PubMed  Google Scholar 

  6. Van Vlierberghe P, Ferrando A (2012) The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 122(10):3398–3406. doi:10.1172/JCI61269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Moorman AV, Richards SM, Martineau M et al (2003) Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 102(8):2756–2762. doi:10.1182/blood-2003-04-1128

    Article  CAS  PubMed  Google Scholar 

  8. Heerema NA, Raimondi SC, Anderson JR et al (2007) Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromosomes Cancer 46(7):684–693. doi:10.1002/gcc.20451

    Article  CAS  PubMed  Google Scholar 

  9. Sutcliffe MJ, Shuster JJ, Sather HN et al (2005) High concordance from independent studies by the Children's Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children's Oncology Group (COG) initiative. Leukemia 19(5):734–740. doi:10.1038/sj.leu.2403673

    Article  CAS  PubMed  Google Scholar 

  10. Paulsson K, Harrison CJ, Andersen MK et al (2013) Distinct patterns of gained chromosomes in high hyperdiploid acute lymphoblastic leukemia with t(1;19)(q23;p13), t(9;22)(q34;q22) or MLL rearrangements. Leukemia 27(4):974–977. doi:10.1038/leu.2012.263

    Article  CAS  PubMed  Google Scholar 

  11. Douet-Guilbert N, Morel F, Le Bris MJ et al (2003) A fluorescence in situ hybridization study of TEL-AML1 fusion gene in B-cell acute lymphoblastic leukemia (1984-2001). Cancer Genet Cytogenet 144(2):143–147

    Article  CAS  PubMed  Google Scholar 

  12. Attarbaschi A, Mann G, Konig M et al (2004) Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia 18(10):1611–1616. doi:10.1038/sj.leu.2403471

    Article  CAS  PubMed  Google Scholar 

  13. Al-Shehhi H, Konn ZJ, Schwab CJ et al (2013) Abnormalities of the der(12)t(12;21) in ETV6-RUNX1 acute lymphoblastic leukemia. Genes Chromosomes Cancer 52(2):202–213. doi:10.1002/gcc.22021

    Article  CAS  PubMed  Google Scholar 

  14. Reddy KS, Yang X, Mak L et al (2000) A child with ALL and ETV6/AML1 fusion on a chromosome 12 due to an insertion of AML1 and loss of ETV6 from the homolog involved in a t(12;15)(p13;q15). Genes Chromosomes Cancer 29(2):106–109

    Article  CAS  PubMed  Google Scholar 

  15. Forestier E, Andersen MK, Autio K et al (2007) Cytogenetic patterns in ETV6/RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia: a Nordic series of 245 cases and review of the literature. Genes Chromosomes Cancer 46(5):440–450. doi:10.1002/gcc.20423

    Article  CAS  PubMed  Google Scholar 

  16. Attarbaschi A, Mann G, Konig M et al (2006) Near-tetraploidy in childhood B-cell precursor acute lymphoblastic leukemia is a highly specific feature of ETV6/RUNX1-positive leukemic cases. Genes Chromosomes Cancer 45(6):608–611. doi:10.1002/gcc.20324

    Article  CAS  PubMed  Google Scholar 

  17. Raimondi SC, Zhou Y, Shurtleff SA et al (2006) Near-triploidy and near-tetraploidy in childhood acute lymphoblastic leukemia: association with B-lineage blast cells carrying the ETV6-RUNX1 fusion, T-lineage immunophenotype, and favorable outcome. Cancer Genet Cytogenet 169(1):50–57. doi:10.1016/j.cancergencyto.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  18. Mullighan CG, Su X, Zhang J et al (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480. doi:10.1056/NEJMoa0808253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Den Boer ML, van Slegtenhorst M, De Menezes RX et al (2009) A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2):125–134. doi:10.1016/S1470-2045(08)70339-5

    Article  CAS  Google Scholar 

  20. Roberts KG, Li Y, Payne-Turner D et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371(11):1005–1015. doi:10.1056/NEJMoa1403088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Roberts KG, Morin RD, Zhang J et al (2012) Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22(2):153–166. doi:10.1016/j.ccr.2012.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harvey RC, Mullighan CG, Chen IM et al (2010) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 115(26):5312–5321. doi:10.1182/blood-2009-09-245944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buitenkamp TD, Pieters R, Gallimore NE et al (2012) Outcome in children with Down's syndrome and acute lymphoblastic leukemia: role of IKZF1 deletions and CRLF2 aberrations. Leukemia 26(10):2204–2211. doi:10.1038/leu.2012.84

    Article  CAS  PubMed  Google Scholar 

  24. Kobayashi K, Mitsui K, Ichikawa H et al (2014) ATF7IP as a novel PDGFRB fusion partner in acute lymphoblastic leukaemia in children. Br J Haematol 165(6):836–841. doi:10.1111/bjh.12834

    Article  CAS  PubMed  Google Scholar 

  25. Reiter A, Walz C, Watmore A et al (2005) The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res 65(7):2662–2667. doi:10.1158/0008-5472.CAN-04-4263

    Article  CAS  PubMed  Google Scholar 

  26. Yano M, Imamura T, Asai D et al (2015) Identification of novel kinase fusion transcripts in paediatric B cell precursor acute lymphoblastic leukaemia with IKZF1 deletion. Br J Haematol 171(5):813–817. doi:10.1111/bjh.13757

    Article  CAS  PubMed  Google Scholar 

  27. De Braekeleer E, Douet-Guilbert N, Rowe D et al (2011) ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 86(5):361–371. doi:10.1111/j.1600-0609.2011.01586.x

    Article  PubMed  CAS  Google Scholar 

  28. Ernst T, Score J, Deininger M et al (2011) Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia. Br J Haematol 153(1):43–46. doi:10.1111/j.1365-2141.2010.08457.x

    Article  CAS  PubMed  Google Scholar 

  29. Kawamura M, Taki T, Kaku H et al (2015) Identification of SPAG9 as a novel JAK2 fusion partner gene in pediatric acute lymphoblastic leukemia with t(9;17)(p24;q21). Genes Chromosomes Cancer 54(7):401–408. doi:10.1002/gcc.22251

    Article  CAS  PubMed  Google Scholar 

  30. Meyer C, Hofmann J, Burmeister T et al (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27(11):2165–2176. doi:10.1038/leu.2013.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huret J (2003) 11q23 rearrangements in leukaemia. Atlas Genet Cytogenet Oncol Haematol 7(4):255–259

    Google Scholar 

  32. Hilden JM, Dinndorf PA, Meerbaum SO et al (2006) Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group. Blood 108(2):441–451. doi:10.1182/blood-2005-07-3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Limbergen H, Poppe B, Janssens A et al (2002) Molecular cytogenetic analysis of 10;11 rearrangements in acute myeloid leukemia. Leukemia 16(3):344–351. doi:10.1038/sj.leu.2402397

    Article  PubMed  CAS  Google Scholar 

  34. Moorman AV, Raimondi SC, Pui CH et al (2005) No prognostic effect of additional chromosomal abnormalities in children with acute lymphoblastic leukemia and 11q23 abnormalities. Leukemia 19(4):557–563. doi:10.1038/sj.leu.2403695

    CAS  PubMed  Google Scholar 

  35. Kamps MP, Murre C, Sun XH et al (1990) A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60(4):547–555

    Article  CAS  PubMed  Google Scholar 

  36. Nourse J, Mellentin JD, Galili N et al (1990) Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60(4):535–545

    Article  CAS  PubMed  Google Scholar 

  37. Andersen MK, Autio K, Barbany G et al (2011) Paediatric B-cell precursor acute lymphoblastic leukaemia with t(1;19)(q23;p13): clinical and cytogenetic characteristics of 47 cases from the Nordic countries treated according to NOPHO protocols. Br J Haematol 155(2):235–243. doi:10.1111/j.1365-2141.2011.08824.x

    Article  PubMed  Google Scholar 

  38. Secker-Walker LM, Berger R, Fenaux P et al (1992) Prognostic significance of the balanced t(1;19) and unbalanced der(19)t(1;19) translocations in acute lymphoblastic leukemia. Leukemia 6(5):363–369

    CAS  PubMed  Google Scholar 

  39. Felice MS, Gallego MS, Alonso CN et al (2011) Prognostic impact of t(1;19)/ TCF3-PBX1 in childhood acute lymphoblastic leukemia in the context of Berlin-Frankfurt-Munster-based protocols. Leuk Lymphoma 52(7):1215–1221. doi:10.3109/10428194.2011.565436

    Article  PubMed  Google Scholar 

  40. Asai D, Imamura T, Yamashita Y et al (2014) Outcome of TCF3-PBX1 positive pediatric acute lymphoblastic leukemia patients in Japan: a collaborative study of Japan Association of Childhood Leukemia Study (JACLS) and Children's Cancer and Leukemia Study Group (CCLSG). Cancer Med 3(3):623–631. doi:10.1002/cam4.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schultz KR, Carroll A, Heerema NA et al (2014) Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 28(7):1467–1471. doi:10.1038/leu.2014.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heerema NA, Harbott J, Galimberti S et al (2004) Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia 18(4):693–702. doi:10.1038/sj.leu.2403324

    Article  CAS  PubMed  Google Scholar 

  43. Robinson HM, Martineau M, Harris RL et al (2005) Derivative chromosome 9 deletions are a significant feature of childhood Philadelphia chromosome positive acute lymphoblastic leukaemia. Leukemia 19(4):564–571. doi:10.1038/sj.leu.2403629

    CAS  PubMed  Google Scholar 

  44. Harrison CJ, Moorman AV, Broadfield ZJ et al (2004) Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol 125(5):552–559. doi:10.1111/j.1365-2141.2004.04948.x

    Article  PubMed  Google Scholar 

  45. Heerema NA, Nachman JB, Sather HN et al (1999) Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children's cancer group. Blood 94(12):4036–4045

    CAS  PubMed  Google Scholar 

  46. Raimondi SC, Zhou Y, Mathew S et al (2003) Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer 98(12):2715–2722. doi:10.1002/cncr.11841

    Article  PubMed  Google Scholar 

  47. Holmfeldt L, Wei L, Diaz-Flores E et al (2013) The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45(3):242–252. doi:10.1038/ng.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muhlbacher V, Zenger M, Schnittger S et al (2014) Acute lymphoblastic leukemia with low hypodiploid/near triploid karyotype is a specific clinical entity and exhibits a very high TP53 mutation frequency of 93%. Genes Chromosomes Cancer 53(6):524–536. doi:10.1002/gcc.22163

    Article  PubMed  CAS  Google Scholar 

  49. Safavi S, Forestier E, Golovleva I et al (2013) Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia 27(1):248–250. doi:10.1038/leu.2012.227

    Article  CAS  PubMed  Google Scholar 

  50. Baughn LB, Biegel JA, South ST et al (2015) Integration of cytogenomic data for furthering the characterization of pediatric B-cell acute lymphoblastic leukemia: a multi-institution, multi-platform microarray study. Cancer Genet 208(1-2):1–18. doi:10.1016/j.cancergen.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  51. Busson-Le Coniat M, Nguyen Khac F, Daniel MT et al (2001) Chromosome 21 abnormalities with AML1 amplification in acute lymphoblastic leukemia. Genes Chromosomes Cancer 32(3):244–249

    Article  CAS  PubMed  Google Scholar 

  52. Niini T, Kanerva J, Vettenranta K et al (2000) AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica 85(4):362–366

    CAS  PubMed  Google Scholar 

  53. Harewood L, Robinson H, Harris R et al (2003) Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 17(3):547–553. doi:10.1038/sj.leu.2402849

    Article  CAS  PubMed  Google Scholar 

  54. Harrison CJ, Moorman AV, Schwab C et al (2014) An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia 28(5):1015–1021. doi:10.1038/leu.2013.317

    Article  CAS  PubMed  Google Scholar 

  55. Rand V, Parker H, Russell LJ et al (2011) Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood 117(25):6848–6855. doi:10.1182/blood-2011-01-329961

    Article  CAS  PubMed  Google Scholar 

  56. Robinson HM, Broadfield ZJ, Cheung KL et al (2003) Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 17(11):2249–2250. doi:10.1038/sj.leu.2403140

    Article  CAS  PubMed  Google Scholar 

  57. Attarbaschi A, Mann G, Panzer-Grumayer R et al (2008) Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials. J Clin Oncol 26(18):3046–3050. doi:10.1200/JCO.2008.16.1117

    Article  CAS  PubMed  Google Scholar 

  58. Heerema NA, Carroll AJ, Devidas M et al (2013) Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children's oncology group. J Clin Oncol 31(27):3397–3402. doi:10.1200/JCO.2013.49.1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li Y, Schwab C, Ryan SL et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508(7494):98–102. doi:10.1038/nature13115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martini A, La Starza R, Janssen H et al (2002) Recurrent rearrangement of the Ewing’s sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Cancer Res 62(19):5408–5412

    CAS  PubMed  Google Scholar 

  61. La Starza R, Aventin A, Crescenzi B et al (2005) CIZ gene rearrangements in acute leukemia: report of a diagnostic FISH assay and clinical features of nine patients. Leukemia 19(9):1696–1699. doi:10.1038/sj.leu.2403842

    Article  PubMed  CAS  Google Scholar 

  62. Zhong CH, Prima V, Liang X et al (2008) E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia 22(4):723–729. doi:10.1038/sj.leu.2405084

    Article  CAS  PubMed  Google Scholar 

  63. Nyquist KB, Thorsen J, Zeller B et al (2011) Identification of the TAF15-ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t(12;17)(p13;q12). Cancer Genet 204(3):147–152. doi:10.1016/j.cancergen.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  64. Grammatico S, Vitale A, La Starza R et al (2013) Lineage switch from pro-B acute lymphoid leukemia to acute myeloid leukemia in a case with t(12;17)(p13;q11)/TAF15-ZNF384 rearrangement. Leuk Lymphoma 54(8):1802–1805. doi:10.3109/10428194.2012.753450

    Article  PubMed  Google Scholar 

  65. Gocho Y, Kiyokawa N, Ichikawa H et al (2015) A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia 29(12):2445–2448. doi:10.1038/leu.2015.111

    Article  CAS  PubMed  Google Scholar 

  66. Krance RA, Raimondi SC, Dubowy R et al (1992) t(12;17)(p13;q21) in early pre-B acute lymphoid leukemia. Leukemia 6(4):251–255

    CAS  PubMed  Google Scholar 

  67. Barber KE, Harrison CJ, Broadfield ZJ et al (2007) Molecular cytogenetic characterization of TCF3 (E2A)/19p13.3 rearrangements in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 46(5):478–486. doi:10.1002/gcc.20431

    Article  CAS  PubMed  Google Scholar 

  68. Forestier E, Gauffin F, Andersen MK et al (2008) Clinical and cytogenetic features of pediatric dic(9;20)(p13.2;q11.2)-positive B-cell precursor acute lymphoblastic leukemias: a Nordic series of 24 cases and review of the literature. Genes Chromosomes Cancer 47(2):149–158. doi:10.1002/gcc.20517

    Article  CAS  PubMed  Google Scholar 

  69. Pichler H, Moricke A, Mann G et al (2010) Prognostic relevance of dic(9;20)(p11;q13) in childhood B-cell precursor acute lymphoblastic leukaemia treated with Berlin-Frankfurt-Munster (BFM) protocols containing an intensive induction and post-induction consolidation therapy. Br J Haematol 149(1):93–100. doi:10.1111/j.1365-2141.2009.08059.x

    Article  CAS  PubMed  Google Scholar 

  70. Clark R, Byatt SA, Bennett CF et al (2000) Monosomy 20 as a pointer to dicentric (9;20) in acute lymphoblastic leukemia. Leukemia 14(2):241–246

    Article  CAS  PubMed  Google Scholar 

  71. Heerema NA, Maben KD, Bernstein J et al (1996) Dicentric (9;20)(p11;q11) identified by fluorescence in situ hybridization in four pediatric acute lymphoblastic leukemia patients. Cancer Genet Cytogenet 92(2):111–115

    Article  CAS  PubMed  Google Scholar 

  72. Schoumans J, Johansson B, Corcoran M et al (2006) Characterisation of dic(9;20)(p11-13;q11) in childhood B-cell precursor acute lymphoblastic leukaemia by tiling resolution array-based comparative genomic hybridisation reveals clustered breakpoints at 9p13.2 and 20q11.2. Br J Haematol 135(4):492–499. doi:10.1111/j.1365-2141.2006.06328.x

    Article  PubMed  Google Scholar 

  73. An Q, Wright SL, Moorman AV et al (2009) Heterogeneous breakpoints in patients with acute lymphoblastic leukemia and the dic(9;20)(p11-13;q11) show recurrent involvement of genes at 20q11.21. Haematologica 94(8):1164–1169. doi:10.3324/haematol.2008.002808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Inaba T, Roberts WM, Shapiro LH et al (1992) Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257(5069):531–534

    Article  CAS  PubMed  Google Scholar 

  75. Hunger SP, Ohyashiki K, Toyama K et al (1992) Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 6(9):1608–1620

    Article  CAS  PubMed  Google Scholar 

  76. Yeung J, Kempski H, Neat M et al (2006) Characterization of the t(17;19) translocation by gene-specific fluorescent in situ hybridization-based cytogenetics and detection of the E2A-HLF fusion transcript and protein in patients’ cells. Haematologica 91(3):422–424

    CAS  PubMed  Google Scholar 

  77. Minson KA, Prasad P, Vear S et al. (2013) t(17;19) in children with acute lymphocytic leukemia: a report of 3 cases and a review of the literature. Case Rep Hematol 2013: 563291. doi:10.1155/2013/563291

  78. Russell LJ, Enshaei A, Jones L et al (2014) IGH@ translocations are prevalent in teenagers and young adults with acute lymphoblastic leukemia and are associated with a poor outcome. J Clin Oncol 32(14):1453–1462. doi:10.1200/JCO.2013.51.3242

    Article  PubMed  Google Scholar 

  79. Akasaka T, Balasas T, Russell LJ et al (2007) Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 109(8):3451–3461. doi:10.1182/blood-2006-08-041012

    Article  CAS  PubMed  Google Scholar 

  80. Chapiro E, Radford-Weiss I, Cung HA et al (2013) Chromosomal translocations involving the IGH@ locus in B-cell precursor acute lymphoblastic leukemia: 29 new cases and a review of the literature. Cancer Genet 206(5):162–173. doi:10.1016/j.cancergen.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  81. Jeffries SJ, Jones L, Harrison CJ et al (2014) IGH@ translocations co-exist with other primary rearrangements in B-cell precursor acute lymphoblastic leukemia. Haematologica 99(8):1334–1342. doi:10.3324/haematol.2014.103820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lundin C, Heldrup J, Ahlgren T et al (2009) B-cell precursor t(8;14)(q11;q32)-positive acute lymphoblastic leukemia in children is strongly associated with Down syndrome or with a concomitant Philadelphia chromosome. Eur J Haematol 82(1):46–53. doi:10.1111/j.1600-0609.2008.01166.x

    Article  CAS  PubMed  Google Scholar 

  83. Messinger YH, Higgins RR, Devidas M et al (2012) Pediatric acute lymphoblastic leukemia with a t(8;14)(q11.2;q32): B-cell disease with a high proportion of Down syndrome: a Children’s Oncology Group study. Cancer Genet 205(9):453–458. doi:10.1016/j.cancergen.2012.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  84. Navid F, Mosijczuk AD, Head DR et al (1999) Acute lymphoblastic leukemia with the (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia 13(1):135–141

    Article  CAS  PubMed  Google Scholar 

  85. Loh ML, Samson Y, Motte E et al (2000) Translocation (2;8)(p12;q24) associated with a cryptic t(12;21)(p13;q22) TEL/AML1 gene rearrangement in a child with acute lymphoblastic leukemia. Cancer Genet Cytogenet 122(2):79–82

    Article  CAS  PubMed  Google Scholar 

  86. Gupta AA, Grant R, Shago M et al (2004) Occurrence of t(8;22)(q24.1;q11.2) involving the MYC locus in a case of pediatric acute lymphoblastic leukemia with a precursor B cell immunophenotype. J Pediatr Hematol Oncol 26(8):532–534

    Article  PubMed  Google Scholar 

  87. Liu W, Hu S, Konopleva M et al (2015) De novo MYC and BCL2 double-hit B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in pediatric and young adult patients associated with poor prognosis. Pediatr Hematol Oncol 32(8):535–547. doi:10.3109/08880018.2015.1087611

    Article  CAS  PubMed  Google Scholar 

  88. van der Burg M, Smit B, Brinkhof B et al (2002) A single split-signal FISH probe set allows detection of TAL1 translocations as well as SIL-TAL1 fusion genes in a single test. Leukemia 16(4):755–761. doi:10.1038/sj.leu.2402432

    Article  PubMed  Google Scholar 

  89. D'Angio M, Valsecchi MG, Testi AM et al (2015) Clinical features and outcome of SIL/TAL1-positive T-cell acute lymphoblastic leukemia in children and adolescents: a 10-year experience of the AIEOP group. Haematologica 100(1):e10–e13. doi:10.3324/haematol.2014.112151

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bash RO, Crist WM, Shuster JJ et al (1993) Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: a Pediatric Oncology Group study. Blood 81(8):2110–2117

    CAS  PubMed  Google Scholar 

  91. Cauwelier B, Dastugue N, Cools J et al (2006) Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRbeta locus rearrangements and putative new T-cell oncogenes. Leukemia 20(7):1238–1244. doi:10.1038/sj.leu.2404243

    Article  CAS  PubMed  Google Scholar 

  92. Ferrando AA, Neuberg DS, Dodge RK et al (2004) Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363(9408):535–536. doi:10.1016/S0140-6736(04)15542-6

    Article  CAS  PubMed  Google Scholar 

  93. Schneider NR, Carroll AJ, Shuster JJ et al (2000) New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. Blood 96(7):2543–2549

    CAS  PubMed  Google Scholar 

  94. Van Vlierberghe P, van Grotel M, Beverloo HB et al (2006) The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108(10):3520–3529. doi:10.1182/blood-2006-04-019927

    Article  PubMed  CAS  Google Scholar 

  95. Bernard OA, Busson-LeConiat M, Ballerini P et al (2001) A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15(10):1495–1504

    Article  CAS  PubMed  Google Scholar 

  96. Nagel S, Kaufmann M, Drexler HG et al (2003) The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 63(17):5329–5334

    CAS  PubMed  Google Scholar 

  97. Attarbaschi A, Pisecker M, Inthal A et al (2010) Prognostic relevance of TLX3 (HOX11L2) expression in childhood T-cell acute lymphoblastic leukaemia treated with Berlin-Frankfurt-Munster (BFM) protocols containing early and late re-intensification elements. Br J Haematol 148(2):293–300. doi:10.1111/j.1365-2141.2009.07944.x

    Article  CAS  PubMed  Google Scholar 

  98. Clappier E, Cuccuini W, Kalota A et al (2007) The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110(4):1251–1261. doi:10.1182/blood-2006-12-064683

    Article  CAS  PubMed  Google Scholar 

  99. Le Noir S, Ben Abdelali R, Lelorch M et al (2012) Extensive molecular mapping of TCRalpha/delta- and TCRbeta-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood 120(16):3298–3309. doi:10.1182/blood-2012-04-425488

    Article  PubMed  CAS  Google Scholar 

  100. La Starza R, Borga C, Barba G et al (2014) Genetic profile of T-cell acute lymphoblastic leukemias with MYC translocations. Blood 124(24):3577–3582. doi:10.1182/blood-2014-06-578856

    Article  PubMed  CAS  Google Scholar 

  101. Asnafi V, Radford-Weiss I, Dastugue N et al (2003) CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 102(3):1000–1006. doi:10.1182/blood-2002-09-2913

    Article  CAS  PubMed  Google Scholar 

  102. Caudell D, Aplan PD (2008) The role of CALM-AF10 gene fusion in acute leukemia. Leukemia 22(4):678–685. doi:10.1038/sj.leu.2405074

    Article  CAS  PubMed  Google Scholar 

  103. van Grotel M, Meijerink JP, van Wering ER et al (2008) Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia 22(1):124–131. doi:10.1038/sj.leu.2404957

    Article  PubMed  CAS  Google Scholar 

  104. Graux C, Cools J, Melotte C et al (2004) Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 36(10):1084–1089. doi:10.1038/ng1425

    Article  CAS  PubMed  Google Scholar 

  105. Graux C, Stevens-Kroef M, Lafage M et al (2009) Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia 23(1):125–133. doi:10.1038/leu.2008.278

    Article  CAS  PubMed  Google Scholar 

  106. Karrman K, Forestier E, Heyman M et al (2009) Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome. Genes Chromosomes Cancer 48(9):795–805. doi:10.1002/gcc.20684

    Article  CAS  PubMed  Google Scholar 

  107. Pui CH, Chessells JM, Camitta B et al (2003) Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 17(4):700–706. doi:10.1038/sj.leu.2402883

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Ms. Lindsey Barbieto for assistance with artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Shago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Shago, M. (2017). Recurrent Cytogenetic Abnormalities in Acute Lymphoblastic Leukemia. In: Wan, T. (eds) Cancer Cytogenetics. Methods in Molecular Biology, vol 1541. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6703-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6703-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6701-8

  • Online ISBN: 978-1-4939-6703-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics