Quantitative Fluorescence In Situ Hybridization (QFISH)

  • Ivan Y. Iourov
Part of the Methods in Molecular Biology book series (MIMB, volume 1541)


Fluorescence in situ hybridization (FISH) has a wide spectrum of applications in current molecular cytogenetic and cancer research. This is a unique technique that can be used for chromosomal DNA analysis in all cell types, at all stages of the cell cycle, and at molecular resolution. Recent developments in microscopy and imaging systems have allowed quantification of digital FISH images (quantitative FISH or QFISH) and have provided a new way for molecular cytogenetic analysis at single-cell level. QFISH can be applied for studying chromosome imbalances in interphase nuclei or metaphase spreads, measuring relative DNA content at chromosomal loci and identifying parental origin of homologous chromosomes. Here, a QFISH protocol suitable for the majority of DNA probes using the popular US National Institute of Health developed ImageJ software is described.

Key words

Chromosome abnormalities DNA probes Fluorescence in situ hybridization Interphase Nucleus Quantification QFISH 



The article is dedicated to Ilia V. Soloviev. I would like to express my gratitude to Prof. Svetlana G Vorsanova and Prof. Yuri B Yurov for helping in the preparation of this chapter. This work was supported by the Russian Science Foundation (Grant #14-35-00060).


  1. 1.
    Poon SS, Lansdorp PM (2001) Quantitative fluorescence in situ hybridization (Q-FISH). Curr Protoc Cell Biol 18:18.4. doi: 10.1002/0471143030.cb1804s12 Google Scholar
  2. 2.
    Truong K, Gibaud A, Dupont JM et al (2003) Rapid prenatal diagnosis of Down syndrome using quantitative fluorescence in situ hybridization on interphase nuclei. Prenat Diagn 23(2):146–151. doi: 10.1002/pd.558 CrossRefPubMedGoogle Scholar
  3. 3.
    Iourov IY, Soloviev IV, Vorsanova SG et al (2005) An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem 53(3):401–408. doi: 10.1369/jhc.4A6419.2005 CrossRefPubMedGoogle Scholar
  4. 4.
    Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1. doi: 10.1186/1755-8166-3-1 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yurov YB, Iourov IY, Vorsanova SG et al (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2(6):e558. doi: 10.1371/journal.pone.0000558 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yurov YB, Iourov IY, Vorsanova SG et al (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98(1-3):139–147. doi:10.1016/j.schres.2007.07.035, Scholar
  7. 7.
    Iourov IY, Vorsanova SG, Liehr T et al (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18(14):2656–2669. doi: 10.1093/hmg/ddp207 CrossRefPubMedGoogle Scholar
  8. 8.
    Iourov IY, Vorsanova SG, Liehr T et al (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220. doi: 10.1016/j.nbd.2009.01.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Yurov YB, Vorsanova SG, Liehr T et al (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7(1):20. doi: 10.1186/1755-8166-7-20 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wan TS, Martens UM, Poon SS et al (1999) Absence or low number of telomere repeats at junctions of dicentric chromosomes. Genes Chromosomes Cancer 24(1):83–86. doi:10.1002/(SICI)1098-2264(199901)24:1<83::AID-GCC12>3.0.CO;2-CCrossRefPubMedGoogle Scholar
  11. 11.
    Kawano Y, Ishikawa N, Aida J et al (2014) Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One 9(4), e93749. doi: 10.1371/journal.pone.0093749 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vorsanova SG, Iourov IY, Beresheva AK et al (2005) Non-disjunction of chromosome 21, alphoid DNA variation, and sociogenetic features of Down syndrome. Tsitol Genet 39(6):30–36PubMedGoogle Scholar
  13. 13.
    Weise A, Gross M, Mrasek K et al (2008) Parental-origin-determination fluorescence in situ hybridization distinguishes homologous human chromosomes on a single-cell level. Int J Mol Med 21(2):189–200. doi: 10.3892/ijmm.21.2.189 PubMedGoogle Scholar
  14. 14.
    Rodenacker K, Aubele M, Hutzler P et al (1997) Groping for quantitative digital 3-D image analysis: an approach to quantitative fluorescence in situ hybridization in thick tissue sections of prostate carcinoma. Anal Cell Pathol 15(1):19–29. doi: 10.1155/1997/790963 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Truong K, Guilly MN, Gerbault-Seureau M et al (1998) Quantitative FISH by image cytometry for the detection of chromosome 1 imbalances in breast cancer: a novel approach analyzing chromosome rearrangements within interphase nuclei. Lab Invest 78(12):1607–1613PubMedGoogle Scholar
  16. 16.
    Stevens R, Almanaseer I, Gonzalez M et al (2007) Analysis of HER2 gene amplification using an automated fluorescence in situ hybridization signal enumeration system. J Mol Diagn 9(2):144–150. doi: 10.2353/jmoldx.2007.060102 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhou Z, Pons MN, Raskin L et al (2007) Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples. Appl Environ Microbiol 73(9):2956–2962. doi: 10.1128/AEM.02954-06 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Amakawa G, Ikemoto K, Ito H et al (2013) Quantitative analysis of centromeric FISH spots during the cell cycle by image cytometry. J Histochem Cytochem 61(10):699–705. doi: 10.1369/0022155413498754 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Harutyunyan T, Hovhannisyan G, Babayan N et al (2015) Influence of aflatoxin B1 on copy number variants in human leukocytes in vitro. Mol Cytogenet 8:25. doi: 10.1186/s13039-015-0131-x CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Iourov IY, Liehr T, Vorsanova SG et al (2006) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosome Res 14(3):223–229. doi: 10.1007/s10577-006-1037-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Iourov IY, Liehr T, Vorsanova SG et al (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24(4):415–417CrossRefPubMedGoogle Scholar
  22. 22.
    Iourov IY, Vorsanova SG, Yurov YB (2008) Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei. Tsitol Genet 42(5):3–8PubMedGoogle Scholar
  23. 23.
    Iourov IY, Vorsanova SG, Pellestor F et al (2006) Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol 334:123–132. doi: 10.1385/1-59745-068-5:123 PubMedGoogle Scholar
  24. 24.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi: 10.1038/nmeth.2089 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Mental Health Research CenterMoscowRussia
  2. 2.Separated Structural Unit “Clinical Research Institute of Pediatrics” named after Y.E. VeltishevRussian National Research Medical University named after N.I. Pirogov, Ministry of Health of Russian FederationMoscowRussia
  3. 3.Moscow State University of Psychology and EducationMoscowRussia

Personalised recommendations