Metagenomics pp 271-286 | Cite as

Screening for N-AHSL-Based-Signaling Interfering Enzymes

  • Stéphane Uroz
  • Phil M. Oger
Part of the Methods in Molecular Biology book series (MIMB, volume 1539)


Quorum sensing (QS)-based signaling is a widespread pathway used by bacteria for the regulation of functions involved in their relation to the environment or their host. QS relies upon the production, accumulation and perception of small diffusable molecules by the bacterial population, hence linking high gene expression with high cell population densities. Among the different QS signal molecules, an important class of signal molecules is the N-acyl homoserine lactone (N-AHSL). In pathogens such as Erwinia or Pseudomonas, N-AHSL based QS is crucial to overcome the host defenses and ensure a successful infection. Interfering with QS-regulation allows the algae Delisea pulcra to avoid surface colonization by bacteria. Thus, interfering the QS-regulation of pathogenic bacteria is a promising antibiotic-free antibacterial therapeutic strategy. To date, two N-AHSL lactonases and one amidohydrolase families of N-ASHL degradation enzymes have been characterized and have proven to be efficient in vitro to control N-AHSL-based QS-regulated functions in pathogens. In this chapter, we provide methods to screen individual clones or bacterial strains as well as pool of clones for genomic and metagenomic libraries, that can be used to identify strains or clones carrying N-ASHL degradation enzymes.

Key words

N-acyl homoserine lactone Quorum sensing Quorum quenching N-AHSL lactonase N-AHSL acylase N-AHSL amidohydrolase 


  1. 1.
    Winans SC, Bassler BL (2002) Mob psychology. J Bacteriol 184:873–883CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11CrossRefPubMedGoogle Scholar
  3. 3.
    Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE et al (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093CrossRefPubMedGoogle Scholar
  4. 4.
    Beck von Bodman S, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177:5000–5008CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904CrossRefPubMedGoogle Scholar
  6. 6.
    Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. Chembiochem 10:205–216CrossRefPubMedGoogle Scholar
  7. 7.
    Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum- sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tannières M, Beury-Cirou A, Vigouroux A, Mondy S, Pellissier F, Dessaux Y et al (2013) A metagenomic study highlights phylogenetic proximity of quorum-quenching and xenobiotic-degrading amidases of the AS-family. PLoS One 8:e65473CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y, Faure D (2008) A metagenomic analysis of soil bacteria extends the diversity of quorum‐quenching lactonases. Environ Microbiol 10:560–570CrossRefPubMedGoogle Scholar
  10. 10.
    Tang K, Zhang XH (2014) Quorum quenching agents: resources for antivirulence therapy. Mar Drugs 12:3245–3282CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579:3713–3717CrossRefPubMedGoogle Scholar
  12. 12.
    Uroz S, Oger P, Chapelle E, Adeline M-T, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74:1357–1366CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR et al (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860CrossRefPubMedGoogle Scholar
  14. 14.
    Luo ZQ, Su S, Farrand SK (2003) In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acyl-homoserine lactone ligands: kinetics and consequences. J Bacteriol 185:5665–5672CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711CrossRefPubMedGoogle Scholar
  16. 16.
    Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V et al (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932CrossRefPubMedGoogle Scholar
  17. 17.
    Uroz S, Chhabra SR, Càmara M, Wiliams P, Oger PM, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322CrossRefPubMedGoogle Scholar
  18. 18.
    Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR, Sockett RE et al (2002) N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL et al (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR et al (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Interactions Arbres MicroorganismesINRA Université de LorraineChampenouxFrance
  2. 2.Univ LyonINSA-Lyon, UCBLVilleurbanne CedexFrance
  3. 3.Univ Lyon, ENS-LyonCNRS UMR5276LyonFrance

Personalised recommendations