Skip to main content

Agrobacterium-Mediated Transformation of Leaf Base Segments

  • Protocol
  • First Online:
Oat

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1536))

Abstract

Agrobacterium-mediated transformation has become a routine method of genetic engineering of cereals, gradually replacing the biolistic protocols. Simple integration patterns of transgenic loci, decent transformation efficiency, and technical simplicity are the main advantages offered by this method. Here we present a detailed protocol for the production of transgenic oat plants by Agrobacterium-mediated transformation of leaf base segments. The use of leaf explants as target tissues for transformation and in vitro regeneration of transgenic plants may be a good alternative for genotypes which are not susceptible to regeneration from immature or mature embryos. We also describe the biochemical and molecular analysis procedures of the transgenic plants including a GUS histochemical assay, and Southern blot, both of which are optimized for application in oat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Somers DA, Rines HW, Gu W, Kaeppler HF, Bushnell WR (1992) Fertile, transgenic oat plants. Nat Biotechnol 10(12):1589–1594. doi:10.1038/nbt1292-1589

    Article  CAS  Google Scholar 

  2. Torbert KA, Rines HW, Somers DA (1995) Use of paromomycin as a selective agent for oat transformation. Plant Cell Rep 14(10):635–640

    Article  CAS  PubMed  Google Scholar 

  3. Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci U S A 95(21):12106–12110. doi:10.1073/pnas.95.21.12106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torbert KA, Gopalraj M, Medberry SL, Olszewski NE, Somers DA (1998) Expression of the Commelina yellow mottle virus promoter in transgenic oat. Plant Cell Rep 17(4):284–287

    Article  CAS  Google Scholar 

  5. Kuai B, Perret S, Wan SM, Dalton SJ, Bettany AJE, Morris P (2001) Transformation of oat and inheritance of bar gene expression. Plant Cell Tissue Organ Cult 66(2):79–88. doi:10.1023/A:1010613704824

    Article  CAS  Google Scholar 

  6. Perret SJ, Valentine J, Leggett JM, Morris P (2003) Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.). J Plant Physiol 160(8):931–943. doi:10.1078/0176-1617-00880

    Article  CAS  PubMed  Google Scholar 

  7. Torbert KA, Rines HW, Somers DA (1998) Transformation of oat using mature embryo-derived tissue cultures. Crop Sci 38(1):226–231

    Article  Google Scholar 

  8. Cho MJ, Jiang W, Lemaux PG (1999) High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci 148(1):9–17. doi:10.1016/S0168-9452(99)00082-5

    Article  CAS  Google Scholar 

  9. Gless C, Lörz H, Jähne-Gärtner A (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J Plant Physiol 152(2–3):151–157. doi:10.1016/s0176-1617(98)80126-0

    Article  CAS  Google Scholar 

  10. Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18(12):959–966

    Article  CAS  Google Scholar 

  11. Maqbool B, Zhong H, El-Maghraby Y, Ahmad A, Chai B, Wang W, Sabzikar R, Sticklen B (2002) Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theor Appl Genet 105(2–3):201–208. doi:10.1007/s00122-002-0984-3

    CAS  PubMed  Google Scholar 

  12. Cho MJ, Choi HW, Okamoto D, Zhang S, Lemaux PG (2003) Expression of green fluorescent protein and its, inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep 21(5):467–474. doi:10.1007/s00299-003-0582-0

    Article  CAS  PubMed  Google Scholar 

  13. Kaeppler HF, Menon GK, Skadsen RW, Nuutila AM, Carlson AR (2000) Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Rep 19(7):661–666

    Article  CAS  Google Scholar 

  14. Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6(1):17–30. doi:10.1007/Bf02762320

    Article  CAS  PubMed  Google Scholar 

  15. Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44(4):691–697. doi:10.1139/gen-44-4-691

    Article  CAS  PubMed  Google Scholar 

  16. Choi HW, Lemaux PG, Cho MJ (2001) High frequency of cytogenetic aberration in transgenic oat (Avena sativa L.) plants. Plant Sci 160(4):763–772. doi:10.1016/s0168-9452(01)00391-0

    Article  PubMed  Google Scholar 

  17. Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci U S A 95(12):7203–7208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leggett JM, Perret SJ, Harper J, Morris P (2000) Chromosomal localization of cotransformed transgenes in the hexaploid cultivated oat Avena sativa L. using fluorescence in situ hybridization. Heredity 84(1):46–53. doi:10.1046/j.1365-2540.2000.00627.x

    Article  CAS  PubMed  Google Scholar 

  19. Dai SH, Zheng P, Marmey P, Zhang SP, Tian WZ, Chen SY, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7(1):25–33. doi:10.1023/A:1009687511633

    Article  CAS  Google Scholar 

  20. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23(12):780–789. doi:10.1007/s00299-004-0892-x

    Article  CAS  PubMed  Google Scholar 

  21. Zalewski W, Orczyk W, Gasparis S, Nadolska-Orczyk A (2012) HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biol 12:206. doi:10.1186/1471-2229-12-206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gasparis S, Bregier C, Orczyk W, Nadolska-Orczyk A (2008) Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants. Plant Cell Rep 27(11):1721–1729. doi:10.1007/s00299-008-0593-y

    Article  CAS  PubMed  Google Scholar 

  23. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  CAS  PubMed  Google Scholar 

  24. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14(6):745–750. doi:10.1038/nbt0696-745

    Article  CAS  PubMed  Google Scholar 

  25. Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115(3):971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11(6):1369–1376. doi:10.1046/j.1365-313X.1997.11061369.x

    Article  CAS  Google Scholar 

  27. Oraby H, Ahmad R (2012) Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci 185:331–339. doi:10.1016/j.plantsci.2012.01.003

    Article  PubMed  Google Scholar 

  28. Chen Z, Zhuge Q, Sundqvist C (1995) Oat leaf base: tissue with an efficient regeneration capacity. Plant Cell Rep 14(6):354–358. doi:10.1007/BF00238596

    CAS  PubMed  Google Scholar 

  29. Chen H, Xu G, Loschke DC, Tomaska L, Rolfe BG (1995) Efficient callus formation and plant regeneration from leaves of oats (Avena sativa L.). Plant Cell Rep 14(6):393–397. doi:10.1007/BF00238604

    CAS  PubMed  Google Scholar 

  30. Gless C, Lörz H, Jähne-Gärtner A (1998) Establishment of a highly efficient regeneration system from leaf base segments of oat (Avena sativa L.). Plant Cell Rep 17(6):441–445. doi:10.1007/s002990050422

    Article  CAS  Google Scholar 

  31. Nuutila AM, Villiger C, Oksman-Caldentey K-M (2002) Embryogenesis and regeneration of green plantlets from oat (Avena sativa L.) leaf-base segments: influence of nitrogen balance, sugar and auxin. Plant Cell Rep 20(12):1156–1161. doi:10.1007/s00299-002-0467-7

    Article  CAS  Google Scholar 

  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  33. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  34. Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci U S A 71(9):3672–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garfinkel DJ, Nester EW (1980) Agrobacterium-tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144(2):732–743

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This research was supported by the Statutory Funds of Plant Breeding and Acclimatization Institute—National Research Institute, No. 1-1-01-4-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Gasparis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gasparis, S. (2017). Agrobacterium-Mediated Transformation of Leaf Base Segments. In: Gasparis, S. (eds) Oat. Methods in Molecular Biology, vol 1536. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6682-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6682-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6680-6

  • Online ISBN: 978-1-4939-6682-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics