RT-qPCR Detection of Senescence-Associated Circular RNAs

  • Amaresh C. Panda
  • Kotb AbdelmohsenEmail author
  • Myriam Gorospe
Part of the Methods in Molecular Biology book series (MIMB, volume 1534)


Primary cells that reach the end of their replicative potential, encounter sublethal stress, or experience the activation of certain oncogenes cease proliferation and enter a state of long-term growth arrest named senescence. The senescent process has been implicated in a variety of age-related diseases and also in the pathogenesis of cancer. Senescence is characterized by distinct changes in the types and levels of coding RNAs (mRNAs) as well as in the vast collective of regulatory noncoding (nc)RNAs, which includes microRNAs, long noncoding RNAs (lncRNAs), and circular (circRNAs). Numerous technologies permit the detection of senescence-associated linear transcripts (mRNAs, lncRNAs, microRNAs), but the identification and quantification of circRNAs in senescence require distinct molecular approaches. In this chapter, we describe a method for the detection and measurement of circRNAs in senescent cells using specialized reverse transcription (RT) followed by real-time quantitative (q)PCR analysis.

Key words

RNA-binding proteins Sponge circRNAs Divergent primer design Transcriptome 



This work was supported in its entirety by the National Institute on Aging Intramural Research Program of the National Institutes of Health.


  1. 1.
    Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) CircularRNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338CrossRefPubMedGoogle Scholar
  3. 3.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388CrossRefPubMedGoogle Scholar
  4. 4.
    Hentze MW, Preiss T (2013) Circular RNAs: splicing’s enigma variations. EMBO J 32:923–925CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH 3rd, Becker KG, Gorospe M (2013) SAL-RNAs: senescence-associated long noncoding RNAs. Aging Cell 12:890–900CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13(1):34–42CrossRefPubMedGoogle Scholar
  8. 8.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Amaresh C. Panda
    • 1
  • Kotb Abdelmohsen
    • 1
    Email author
  • Myriam Gorospe
    • 1
  1. 1.Laboratory of Genetics and GenomicsNational Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimoreUSA

Personalised recommendations