A Guide to the PLAZA 3.0 Plant Comparative Genomic Database

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1533)

Abstract

PLAZA 3.0 is an online resource for comparative genomics and offers a versatile platform to study gene functions and gene families or to analyze genome organization and evolution in the green plant lineage. Starting from genome sequence information for over 35 plant species, precomputed comparative genomic data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, and genomic colinearity information within and between species. Complementary functional data sets, a Workbench, and interactive visualization tools are available through a user-friendly web interface, making PLAZA an excellent starting point to translate sequence or omics data sets into biological knowledge. PLAZA is available at http://bioinformatics.psb.ugent.be/plaza/.

Key words

Gene family Orthology Gene functions Comparative genomics Plants 

References

  1. 1.
    Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6. doi: 10.3835/plantgenome2013.3803.0001in
  2. 2.
    Wegrzyn JL, Liechty JD, Stevens KA, Wu L-S, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martinez-Garcia PJ, Holt C, Yandell M, Zimin AV, Yorke JA, Crepeau MW, Puiu D, Salzberg SL, de Jong PJ, Mockaitis K, Main D, Langley CH, Neale DB (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vlad D, Kierzkowski D, Rast MI, Vuolo F, Dello Ioio R, Galinha C, Gan X, Hajheidari M, Hay A, Smith RS, Huijser P, Bailey CD, Tsiantis M (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343:780–783CrossRefPubMedGoogle Scholar
  4. 4.
    Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Le Gouis J, Balfourier F, Alaux M, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury J-M, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C (2014) Structural and functional partitioning of bread wheat chromosome 3B. Science 345:1249721CrossRefPubMedGoogle Scholar
  5. 5.
    Hardison RC (2003) Comparative genomics. PLoS Biol 1:156–160CrossRefGoogle Scholar
  6. 6.
    Vandepoele K, Van de Peer Y (2005) Exploring the plant transcriptome through phylogenetic profiling. Plant Physiol 137:31–42CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Proost S, Van Bel M, Vaneechoutte D, Van de Peer Y, Inzé D, Mueller-Roeber B, Vandepoele K (2015) PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res 43:D974–D981CrossRefPubMedGoogle Scholar
  8. 8.
    Vandepoele K, Van Bel M, Richard G, Van Landeghem S, Verhelst B, Moreau H, Van de Peer Y, Grimsley N, Piganeau G (2013) pico-PLAZA, a genome database of microbial photosynthetic eukaryotes. Environ Microbiol 15:2147–2153CrossRefPubMedGoogle Scholar
  9. 9.
    Van Bel M, Proost S, Van Neste C, Deforce D, Van de Peer Y, Vandepoele K (2013) TRAPID: an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes. Genome Biol 14:R134CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Price MN, Dehal PS, Arkin AP (2010) FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG, Rensing SA, Kersten B, Mueller-Roeber B (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827CrossRefPubMedGoogle Scholar
  14. 14.
    Jin J, Zhang H, Kong L, Gao G, Luo J (2014) PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 42:D1182–D1187CrossRefPubMedGoogle Scholar
  15. 15.
    Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475CrossRefPubMedGoogle Scholar
  16. 16.
    Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162CrossRefPubMedGoogle Scholar
  17. 17.
    Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460CrossRefPubMedGoogle Scholar
  18. 18.
    Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Biol 19:99–113Google Scholar
  19. 19.
    Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688CrossRefPubMedGoogle Scholar
  20. 20.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen F, Mackey AJ, Vermunt JK, Roos DS (2007) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One 2:e383CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Plant Systems BiologyVIBGhentBelgium
  2. 2.Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  3. 3.Bioinformatics Institute GhentGhent UniversityGhentBelgium

Personalised recommendations