Skip to main content

Current Trends and Alternative Scenarios in EBV Research

  • Protocol
  • First Online:
Epstein Barr Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1532))

Abstract

Epstein-Barr virus (EBV) infection is associated with several distinct hematological and epithelial malignancies, e.g., Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and others. The association with several malignant tumors of local and worldwide distribution makes EBV one of the most important tumor viruses. Furthermore, because EBV can cause posttransplant lymphoproliferative disease, transplant medicine has to deal with EBV as a major pathogenic virus second only to cytomegalovirus. In this review, we summarize briefly the natural history of EBV infection and outline some of the recent advances in the pathogenesis of the major EBV-associated neoplasms. We present alternative scenarios and discuss them in the light of most recent experimental data. Emerging research areas including EBV-induced patho-epigenetic alterations in host cells and the putative role of exosome-mediated information transfer in disease development are also within the scope of this review. This book contains an in-depth description of a series of modern methodologies used in EBV research. In this introductory chapter, we thoroughly refer to the applications of these methods and demonstrate how they contributed to the understanding of EBV-host cell interactions. The data gathered using recent technological advancements in molecular biology and immunology as well as the application of sophisticated in vitro and in vivo experimental models certainly provided deep and novel insights into the pathogenetic mechanisms of EBV infection and EBV-associated tumorigenesis. Furthermore, the development of adoptive T cell immunotherapy has provided a novel approach to the therapy of viral disease in transplant medicine and hematology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703

    Article  CAS  PubMed  Google Scholar 

  2. Munz C (Ed) (2015) Epstein Barr virus volume 1: one herpes virus: many diseases. In: Current Topics in Microbiology and Immunology, vol 390. Springer International Publishing, New York. doi:10.1007/978-3-319-22822-8

  3. Munz C (Ed) (2015) Epstein Barr virus volume 2: one herpes virus: many diseases. In: Current topics in microbiology and immunology, vol 391. Springer International Publishing, New York. doi:10.1007/978-3-319-22834-1

  4. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310(5974):207–211

    Article  CAS  PubMed  Google Scholar 

  5. Lin Z, Wang X, Strong MJ, Concha M, Baddoo M, Xu G, Baribault C, Fewell C, Hulme W, Hedges D, Taylor CM, Flemington EK (2013) Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. J Virol 87(2):1172–1182. doi:10.1128/JVI.02517-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kwok H, Wu CW, Palser AL, Kellam P, Sham PC, Kwong DL, Chiang AK (2014) Genomic diversity of Epstein-Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. J Virol 88(18):10662–10672. doi:10.1128/JVI.01665-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palser AL, Grayson NE, White RE, Corton C, Correia S, Ba Abdullah MM, Watson SJ, Cotten M, Arrand JR, Murray PG, Allday MJ, Rickinson AB, Young LS, Farrell PJ, Kellam P (2015) Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. J Virol 89(10):5222–5237. doi:10.1128/JVI.03614-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farrell PJ (2015) Epstein-Barr virus strain variation. Curr Top Microbiol Immunol 390(Pt 1):45–69. doi:10.1007/978-3-319-22822-8_4

    PubMed  Google Scholar 

  9. Vockerodt M, Yap LF, Shannon-Lowe C, Curley H, Wei W, Vrzalikova K, Murray PG (2015) The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol 235(2):312–322. doi:10.1002/path.4459

    Article  PubMed  Google Scholar 

  10. Tsao SW, Tsang CM, To KF, Lo KW (2015) The role of Epstein-Barr virus in epithelial malignancies. J Pathol 235(2):323–333. doi:10.1002/path.4448

    Article  CAS  PubMed  Google Scholar 

  11. Niller HH, Banati F, Salamon D, Minarovits J (2016) Epigenetic alterations in Epstein-Barr virus-associated diseases. Adv Exp Med Biol 879:39–69. doi:10.1007/978-3-319-24738-0_3

    Article  PubMed  Google Scholar 

  12. Longnecker R, Kieff E, Cohen JI (2013) Epstein Barr virus. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1898–1959

    Google Scholar 

  13. Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1(1):75–82. doi:10.1038/35095584

    Article  CAS  PubMed  Google Scholar 

  14. Decaussin G, Sbih-Lammali F, de Turenne-Tessier M, Bouguermouh A, Ooka T (2000) Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res 60(19):5584–5588

    CAS  PubMed  Google Scholar 

  15. zur Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, van den Brule AJ (2000) Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res 60(10):2745–2748

    CAS  PubMed  Google Scholar 

  16. Seto E, Yang L, Middeldorp J, Sheen TS, Chen JY, Fukayama M, Eizuru Y, Ooka T, Takada K (2005) Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression. J Med Virol 76(1):82–88. doi:10.1002/jmv.20327

    Article  CAS  PubMed  Google Scholar 

  17. Takada K (2012) Role of EBER and BARF1 in nasopharyngeal carcinoma (NPC) tumorigenesis. Semin Cancer Biol 22(2):162–165. doi:10.1016/j.semcancer.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  18. Lin Z, Xu G, Deng N, Taylor C, Zhu D, Flemington EK (2010) Quantitative and qualitative RNA-Seq-based evaluation of Epstein-Barr virus transcription in type I latency Burkitt’s lymphoma cells. J Virol 84(24):13053–13058. doi:10.1128/JVI.01521-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Concha M, Wang X, Cao S, Baddoo M, Fewell C, Lin Z, Hulme W, Hedges D, McBride J, Flemington EK (2012) Identification of new viral genes and transcript isoforms during Epstein-Barr virus reactivation using RNA-Seq. J Virol 86(3):1458–1467. doi:10.1128/JVI.06537-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. doi:10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  21. O’Grady T, Cao S, Strong MJ, Concha M, Wang X, Splinter Bondurant S, Adams M, Baddoo M, Srivastav SK, Lin Z, Fewell C, Yin Q, Flemington EK (2014) Global bidirectional transcription of the Epstein-Barr virus genome during reactivation. J Virol 88(3):1604–1616. doi:10.1128/JVI.02989-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Strong MJ, Baddoo M, Nanbo A, Xu M, Puetter A, Lin Z (2014) Comprehensive high-throughput RNA sequencing analysis reveals contamination of multiple nasopharyngeal carcinoma cell lines with HeLa cell genomes. J Virol 88(18):10696–10704. doi:10.1128/JVI.01457-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cao S, Strong MJ, Wang X, Moss WN, Concha M, Lin Z, O’Grady T, Baddoo M, Fewell C, Renne R, Flemington EK (2015) High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project. J Virol 89(1):713–729. doi:10.1128/JVI.02570-14

    Article  PubMed  CAS  Google Scholar 

  24. Cao S, Moss W, O’Grady T, Concha M, Strong MJ, Wang X, Yu Y, Baddoo M, Zhang K, Fewell C, Lin Z, Dong Y, Flemington EK (2015) New noncoding lytic transcripts derived from the Epstein-Barr virus latency origin of replication, oriP, are hyperedited, bind the paraspeckle protein, NONO/p54nrb, and support viral lytic transcription. J Virol 89(14):7120–7132. doi:10.1128/JVI.00608-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607. doi:10.1038/nature11003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202–209. doi:10.1038/nature13480

    Article  CAS  Google Scholar 

  27. Strong MJ, Laskow T, Nakhoul H, Blanchard E, Liu Y, Wang X, Baddoo M, Lin Z, Yin Q, Flemington EK (2015) Latent expression of the Epstein-Barr virus (EBV)-encoded major histocompatibility complex class I TAP inhibitor, BNLF2a, in EBV-positive gastric carcinomas. J Virol 89(19):10110–10114. doi:10.1128/JVI.01110-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu L, Lin Z, Wu Y, Dong J, Zhao B, Cheng Y, Huang P, Xu L, Xia T, Xiong D, Wang H, Li M, Guo L, Kieff E, Zeng Y, Zhong Q, Zeng M (2016) Comprehensive profiling of EBV gene expression in nasopharyngeal carcinoma through paired-end transcriptome sequencing. Front Med 10(1):61–75. doi:10.1007/s11684-016-0436-0

    Article  PubMed  Google Scholar 

  29. Georges AA, Frappier L (2015) Proteomics methods for discovering viral-host interactions. Methods 90:21–27. doi:10.1016/j.ymeth.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  30. Holowaty MN, Zeghouf M, Wu H, Tellam J, Athanasopoulos V, Greenblatt J, Frappier L (2003) Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278(32):29987–29994. doi:10.1074/jbc.M303977200

    Article  CAS  PubMed  Google Scholar 

  31. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18(1):25–36. doi:10.1016/j.molcel.2005.02.029

    Article  CAS  PubMed  Google Scholar 

  32. Sivachandran N, Sarkari F, Frappier L (2008) Epstein-Barr nuclear antigen 1 contributes to nasopharyngeal carcinoma through disruption of PML nuclear bodies. PLoS Pathog 4(10):e1000170. doi:10.1371/journal.ppat.1000170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sivachandran N, Dawson CW, Young LS, Liu FF, Middeldorp J, Frappier L (2012) Contributions of the Epstein-Barr virus EBNA1 protein to gastric carcinoma. J Virol 86(1):60–68. doi:10.1128/JVI.05623-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sivachandran N, Wang X, Frappier L (2012) Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. J Virol 86(11):6146–6158. doi:10.1128/JVI.00013-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mansouri S, Pan Q, Blencowe BJ, Claycomb JM, Frappier L (2014) Epstein-Barr virus EBNA1 protein regulates viral latency through effects on let-7 microRNA and dicer. J Virol 88(19):11166–11177. doi:10.1128/JVI.01785-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sivachandran N, Cao JY, Frappier L (2010) Epstein-Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84(21):11113–11123. doi:10.1128/JVI.01183-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang ZG, Ruggero D, Ronchetti S, Zhong S, Gaboli M, Rivi R, Pandolfi PP (1998) PML is essential for multiple apoptotic pathways. Nat Genet 20(3):266–272. doi:10.1038/3073

    Article  CAS  PubMed  Google Scholar 

  38. Murakami M, Lan K, Subramanian C, Robertson ES (2005) Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol 79(3):1559–1568. doi:10.1128/JVI.79.3.1559-1568.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R, Wasik MA, Middeldorp J, Robertson ES (2011) Epstein-Barr virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 410(1):64–75. doi:10.1016/j.virol.2010.10.029

    Article  CAS  PubMed  Google Scholar 

  40. Thorley-Lawson DA (2015) EBV persistence—introducing the virus. Curr Top Microbiol Immunol 390(Pt 1):151–209. doi:10.1007/978-3-319-22822-8_8

    PubMed  Google Scholar 

  41. Heuts F, Rottenberg ME, Salamon D, Rasul E, Adori M, Klein G, Klein E, Nagy N (2014) T cells modulate Epstein-Barr virus latency phenotypes during infection of humanized mice. J Virol 88(6):3235–3245. doi:10.1128/JVI.02885-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C, Kube D, Feederle R, Delecluse HJ, Rickinson AB, Bell AI (2012) Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog 8(5):e1002697. doi:10.1371/journal.ppat.1002697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kurth J, Hansmann ML, Rajewsky K, Kuppers R (2003) Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci U S A 100(8):4730–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kurth J, Spieker T, Wustrow J, Strickler GJ, Hansmann LM, Rajewsky K, Kuppers R (2000) EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13(4):485–495

    Article  CAS  PubMed  Google Scholar 

  45. Cocco M, Bellan C, Tussiwand R, Corti D, Traggiai E, Lazzi S, Mannucci S, Bronz L, Palummo N, Ginanneschi C, Tosi P, Lanzavecchia A, Manz MG, Leoncini L (2008) CD34+ cord blood cell-transplanted Rag2–/– gamma(c)–/– mice as a model for Epstein-Barr virus infection. Am J Pathol 173(5):1369–1378. doi:10.2353/ajpath.2008.071186

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chaganti S, Heath EM, Bergler W, Kuo M, Buettner M, Niedobitek G, Rickinson AB, Bell AI (2009) Epstein-Barr virus colonization of tonsillar and peripheral blood B-cell subsets in primary infection and persistence. Blood 113(25):6372–6381. doi:10.1182/blood-2008-08-175828

    Article  PubMed  CAS  Google Scholar 

  47. Burns DM, Tierney R, Shannon-Lowe C, Croudace J, Inman C, Abbotts B, Nagra S, Fox CP, Chaganti S, Craddock CF, Moss P, Rickinson AB, Rowe M, Bell AI (2015) Memory B-cell reconstitution following allogeneic hematopoietic stem cell transplantation is an EBV-associated transformation event. Blood 126(25):2665–2675. doi:10.1182/blood-2015-08-665000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niller HH, Szenthe K, Minarovits J (2014) Epstein-Barr virus-host cell interactions: an epigenetic dialog? Front Genet 5:367. doi:10.3389/fgene.2014.00367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rowe M, Glaunsinger B, van Leeuwen D, Zuo J, Sweetman D, Ganem D, Middeldorp J, Wiertz EJ, Ressing ME (2007) Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104(9):3366–3371. doi:10.1073/pnas.0611128104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramasubramanyan S, Osborn K, Al-Mohammad R, Naranjo Perez-Fernandez IB, Zuo J, Balan N, Godfrey A, Patel H, Peters G, Rowe M, Jenner RG, Sinclair AJ (2015) Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. Nucleic Acids Res 43(7):3563–3577. doi:10.1093/nar/gkv212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Temple RM, Zhu J, Budgeon L, Christensen ND, Meyers C, Sample CE (2014) Efficient replication of Epstein-Barr virus in stratified epithelium in vitro. Proc Natl Acad Sci U S A 111(46):16544–16549. doi:10.1073/pnas.1400818111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Suarez F, Lortholary O, Hermine O, Lecuit M (2006) Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 107(8):3034–3044. doi:10.1182/blood-2005-09-3679

    Article  CAS  PubMed  Google Scholar 

  53. Magrath I (2012) Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol 156(6):744–756. doi:10.1111/j.1365-2141.2011.09013.x

    Article  CAS  PubMed  Google Scholar 

  54. Amato T, Abate F, Piccaluga P, Iacono M, Fallerini C, Renieri A, De Falco G, Ambrosio MR, Mourmouras V, Ogwang M, Calbi V, Rabadan R, Hummel M, Pileri S, Leoncini L, Bellan C (2016) Clonality analysis of immunoglobulin gene rearrangement by next-generation sequencing in endemic Burkitt lymphoma suggests antigen drive activation of BCR as opposed to sporadic Burkitt lymphoma. Am J Clin Pathol 145(1):116–127. doi:10.1093/ajcp/aqv011

    Article  PubMed  Google Scholar 

  55. Richter J, Schlesner M, Hoffmann S, Kreuz M, Leich E, Burkhardt B, Rosolowski M, Ammerpohl O, Wagener R, Bernhart SH, Lenze D, Szczepanowski M, Paulsen M, Lipinski S, Russell RB, Adam-Klages S, Apic G, Claviez A, Hasenclever D, Hovestadt V, Hornig N, Korbel JO, Kube D, Langenberger D, Lawerenz C, Lisfeld J, Meyer K, Picelli S, Pischimarov J, Radlwimmer B, Rausch T, Rohde M, Schilhabel M, Scholtysik R, Spang R, Trautmann H, Zenz T, Borkhardt A, Drexler HG, Moller P, MacLeod RA, Pott C, Schreiber S, Trumper L, Loeffler M, Stadler PF, Lichter P, Eils R, Kuppers R, Hummel M, Klapper W, Rosenstiel P, Rosenwald A, Brors B, Siebert R, Project IM-S (2012) Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet 44(12):1316–1320. doi:10.1038/ng.2469

    Article  CAS  PubMed  Google Scholar 

  56. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120. doi:10.1038/nature11378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Love C, Sun Z, Jima D, Li G, Zhang J, Miles R, Richards KL, Dunphy CH, Choi WW, Srivastava G, Lugar PL, Rizzieri DA, Lagoo AS, Bernal-Mizrachi L, Mann KP, Flowers CR, Naresh KN, Evens AM, Chadburn A, Gordon LI, Czader MB, Gill JI, Hsi ED, Greenough A, Moffitt AB, McKinney M, Banerjee A, Grubor V, Levy S, Dunson DB, Dave SS (2012) The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 44(12):1321–1325. doi:10.1038/ng.2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bellan C, Lazzi S, Hummel M, Palummo N, de Santi M, Amato T, Nyagol J, Sabattini E, Lazure T, Pileri SA, Raphael M, Stein H, Tosi P, Leoncini L (2005) Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas. Blood 106(3):1031–1036. doi:10.1182/blood-2005-01-0168

    Article  CAS  PubMed  Google Scholar 

  59. Lenoir GM, Bornkamm G (1987) Burkitt’s lymphoma, a human cancer model for the study of the multistep development of cancer: proposal for a new scenario. In: Klein G (ed) Advances in viral oncology, vol 7. Raven, New York, pp 173–206

    Google Scholar 

  60. Araujo I, Foss HD, Bittencourt A, Hummel M, Demel G, Mendonca N, Herbst H, Stein H (1996) Expression of Epstein-Barr virus-gene products in Burkitt’s lymphoma in northeast Brazil. Blood 87(12):5279–5286

    CAS  PubMed  Google Scholar 

  61. Araujo I, Foss HD, Hummel M, Anagnostopoulos I, Barbosa HS, Bittencourt A, Stein H (1999) Frequent expansion of Epstein-Barr virus (EBV) infected cells in germinal centres of tonsils from an area with a high incidence of EBV-associated lymphoma. J Pathol 187(3):326–330. doi:10.1002/(SICI)1096-9896(199902)187:3<326::AID-PATH242>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  62. Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Bauml G, Rucker O, Schwarzmann F, Wolf H, Minarovits J (2003) The in vivo binding site for oncoprotein c-Myc in the promoter for Epstein-Barr virus (EBV) encoding RNA (EBER) 1 suggests a specific role for EBV in lymphomagenesis. Med Sci Monit 9(1):HY1–HY9

    CAS  PubMed  Google Scholar 

  63. Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Schwarzmann F, Wolf H, Minarovits J (2004) EBV-associated neoplasms: alternative pathogenetic pathways. Med Hypotheses 62(3):387–391. doi:10.1016/j.mehy.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  64. Niller HH, Salamon D, Banati F, Schwarzmann F, Wolf H, Minarovits J (2004) The LCR of EBV makes Burkitt’s lymphoma endemic. Trends Microbiol 12(11):495–499

    Article  CAS  PubMed  Google Scholar 

  65. Orem J, Mbidde EK, Lambert B, de Sanjose S, Weiderpass E (2007) Burkitt’s lymphoma in Africa, a review of the epidemiology and etiology. Afr Health Sci 7(3):166–175. doi:10.5555/afhs.2007.7.3.166

    PubMed  PubMed Central  Google Scholar 

  66. Moormann AM, Snider CJ, Chelimo K (2011) The company malaria keeps: how co-infection with Epstein-Barr virus leads to endemic Burkitt lymphoma. Curr Opin Infect Dis 24(5):435–441. doi:10.1097/QCO.0b013e328349ac4f

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kuhn-Hallek I, Sage DR, Stein L, Groelle H, Fingeroth JD (1995) Expression of recombination activating genes (RAG-1 and RAG-2) in Epstein-Barr virus-bearing B cells. Blood 85(5):1289–1299

    CAS  PubMed  Google Scholar 

  68. He B, Raab-Traub N, Casali P, Cerutti A (2003) EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol 171(10):5215–5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Epeldegui M, Hung YP, McQuay A, Ambinder RF, Martinez-Maza O (2007) Infection of human B cells with Epstein-Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol Immunol 44(5):934–942. doi:10.1016/j.molimm.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  70. Chene A, Donati D, Orem J, Mbidde ER, Kironde F, Wahlgren M, Bejarano MT (2009) Endemic Burkitt’s lymphoma as a polymicrobial disease: new insights on the interaction between Plasmodium falciparum and Epstein-Barr virus. Semin Cancer Biol 19(6):411–420. doi:10.1016/j.semcancer.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  71. Iskra S, Kalla M, Delecluse HJ, Hammerschmidt W, Moosmann A (2010) Toll-like receptor agonists synergistically increase proliferation and activation of B cells by Epstein-Barr virus. J Virol 84(7):3612–3623. doi:10.1128/JVI.01400-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Simone O, Bejarano MT, Pierce SK, Antonaci S, Wahlgren M, Troye-Blomberg M, Donati D (2011) TLRs innate immunereceptors and Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) CIDR1alpha-driven human polyclonal B-cell activation. Acta Trop 119(2–3):144–150. doi:10.1016/j.actatropica.2011.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shannon-Lowe C, Rowe M (2011) Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog 7(5):e1001338. doi:10.1371/journal.ppat.1001338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Torgbor C, Awuah P, Deitsch K, Kalantari P, Duca KA, Thorley-Lawson DA (2014) A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog 10(5):e1004170. doi:10.1371/journal.ppat.1004170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC (2012) Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120(11):2240–2248. doi:10.1182/blood-2012-03-415380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM (2014) Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med 4(2):a014282. doi:10.1101/cshperspect.a014282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Robbiani DF, Deroubaix S, Feldhahn N, Oliveira TY, Callen E, Wang Q, Jankovic M, Silva IT, Rommel PC, Bosque D, Eisenreich T, Nussenzweig A, Nussenzweig MC (2015) Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell 162(4):727–737. doi:10.1016/j.cell.2015.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig MC, Dalla-Favera R (2012) The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol 13(11):1083–1091. doi:10.1038/ni.2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilmore JR, Asito AS, Wei C, Piriou E, Sumba PO, Sanz I, Rochford R (2015) AID expression in peripheral blood of children living in a malaria holoendemic region is associated with changes in B cell subsets and Epstein-Barr virus. Int J Cancer 136(6):1371–1380. doi:10.1002/ijc.29127

    Article  CAS  PubMed  Google Scholar 

  80. Faili A, Aoufouchi S, Weller S, Vuillier F, Stary A, Sarasin A, Reynaud CA, Weill JC (2004) DNA polymerase eta is involved in hypermutation occurring during immunoglobulin class switch recombination. J Exp Med 199(2):265–270. doi:10.1084/jem.20031831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bryant KF, Yan Z, Dreyfus DH, Knipe DM (2012) Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication. J Virol 86(12):6825–6834. doi:10.1128/JVI.00374-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Malagon F, Gonzalez-Angulo J, Carrasco E, Robert L (2011) Etiopathogenesis of Burkitt’s lymphoma: a lesson from a BL-like in CD1 mouse immune to Plasmodium yoelii yoelii. Infect Agent Cancer 6(1):10. doi:10.1186/1750-9378-6-10

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rochford R, Cannon MJ, Moormann AM (2005) Endemic Burkitt’s lymphoma: a polymicrobial disease? Nat Rev Microbiol 3(2):182–187. doi:10.1038/nrmicro1089

    Article  CAS  PubMed  Google Scholar 

  84. van den Bosch C, Lloyd G (2000) Chikungunya fever as a risk factor for endemic Burkitt’s lymphoma in Malawi. Trans R Soc Trop Med Hyg 94(6):704–705

    Article  PubMed  Google Scholar 

  85. van den Bosch C (2012) A role for RNA viruses in the pathogenesis of Burkitt’s lymphoma: the need for reappraisal. Adv Hematol 2012:494758. doi:10.1155/2012/494758

    PubMed  Google Scholar 

  86. van den Bosch CA (2004) Is endemic Burkitt’s lymphoma an alliance between three infections and a tumour promoter? Lancet Oncol 5(12):738–746

    Article  PubMed  Google Scholar 

  87. Aya T, Kinoshita T, Imai S, Koizumi S, Mizuno F, Osato T, Satoh C, Oikawa T, Kuzumaki N, Ohigashi H et al (1991) Chromosome translocation and c-MYC activation by Epstein-Barr virus and Euphorbia tirucalli in B lymphocytes. Lancet 337(8751):1190

    Article  CAS  PubMed  Google Scholar 

  88. Mizuno F, Koizumi S, Osato T, Kokwaro JO, Ito Y (1983) Chinese and african euphorbiaceae plant extracts: markedly enhancing effect on Epstein-Barr virus-induced transformation. Cancer Lett 19(2):199–205

    Article  CAS  PubMed  Google Scholar 

  89. Mannucci S, Luzzi A, Carugi A, Gozzetti A, Lazzi S, Malagnino V, Simmonds M, Cusi MG, Leoncini L, van den Bosch CA, De Falco G (2012) EBV reactivation and chromosomal polysomies: Euphorbia tirucalli as a possible cofactor in endemic burkitt lymphoma. Adv Hematol 2012:149780. doi:10.1155/2012/149780

    Article  PubMed  PubMed Central  Google Scholar 

  90. Minnicelli C, Barros MH, Klumb CE, Romano SO, Zalcberg IR, Hassan R (2012) Relationship of Epstein-Barr virus and interleukin 10 promoter polymorphisms with the risk and clinical outcome of childhood Burkitt lymphoma. PLoS One 7(9):e46005. doi:10.1371/journal.pone.0046005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Oduor CI, Chelimo K, Ouma C, Mulama DH, Foley J, Vulule J, Bailey JA, Moormann AM (2014) Interleukin-6 and interleukin-10 gene promoter polymorphisms and risk of endemic Burkitt lymphoma. Am J Trop Med Hyg 91(3):649–654. doi:10.4269/ajtmh.13-0616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pike MC, Morrow RH, Kisuule A, Mafigiri J (1970) Burkitt’s lymphoma and sickle cell trait. Br J Prev Soc Med 24(1):39–41

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mulama DH, Bailey JA, Foley J, Chelimo K, Ouma C, Jura WG, Otieno J, Vulule J, Moormann AM (2014) Sickle cell trait is not associated with endemic Burkitt lymphoma: an ethnicity and malaria endemicity-matched case–control study suggests factors controlling EBV may serve as a predictive biomarker for this pediatric cancer. Int J Cancer 134(3):645–653. doi:10.1002/ijc.28378

    Article  CAS  PubMed  Google Scholar 

  94. Klein G (1987) In defense of the “old” Burkitt lymphoma scenario. In: Klein G (ed) Advances in viral oncology, vol 7. Raven, New York, pp 207–211

    Google Scholar 

  95. Allday MJ (2009) How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’s lymphoma? Semin Cancer Biol 19(6):366–376. doi:10.1016/j.semcancer.2009.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Niller HH, Salamon D, Rahmann S, Ilg K, Koroknai A, Banati F, Schwarzmann F, Wolf H, Minarovits J (2004) A 30 kb region of the Epstein-Barr virus genome is colinear with the rearranged human immunoglobulin gene loci: implications for a “ping-pong evolution” model for persisting viruses and their hosts. A review. Acta Microbiol Immunol Hung 51(4):469–484. doi:10.1556/AMicr.51.2004.4.7

    Article  CAS  PubMed  Google Scholar 

  97. Khan G (2006) Epstein-Barr virus and the germinal center B cells. Exp Hematol 34(6):695–696. doi:10.1016/j.exphem.2006.02.021

    Article  PubMed  Google Scholar 

  98. Panagopoulos D, Victoratos P, Alexiou M, Kollias G, Mosialos G (2004) Comparative analysis of signal transduction by CD40 and the Epstein-Barr virus oncoprotein LMP1 in vivo. J Virol 78(23):13253–13261. doi:10.1128/JVI.78.23.13253-13261.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tobollik S, Meyer L, Buettner M, Klemmer S, Kempkes B, Kremmer E, Niedobitek G, Jungnickel B (2006) Epstein-Barr virus nuclear antigen 2 inhibits AID expression during EBV-driven B-cell growth. Blood 108(12):3859–3864. doi:10.1182/blood-2006-05-021303

    Article  CAS  PubMed  Google Scholar 

  100. Boccellato F, Anastasiadou E, Rosato P, Kempkes B, Frati L, Faggioni A, Trivedi P (2007) EBNA2 interferes with the germinal center phenotype by downregulating BCL6 and TCL1 in non-Hodgkin’s lymphoma cells. J Virol 81(5):2274–2282. doi:10.1128/JVI.01822-06

    Article  CAS  PubMed  Google Scholar 

  101. Roughan JE, Thorley-Lawson DA (2009) The intersection of Epstein-Barr virus with the germinal center. J Virol 83(8):3968–3976. doi:10.1128/JVI.02609-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roughan JE, Torgbor C, Thorley-Lawson DA (2010) Germinal center B cells latently infected with Epstein-Barr virus proliferate extensively but do not increase in number. J Virol 84(2):1158–1168. doi:10.1128/JVI.01780-09

    Article  CAS  PubMed  Google Scholar 

  103. Kelly G, Bell A, Rickinson A (2002) Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8(10):1098–1104. doi:10.1038/nm758

    Article  CAS  PubMed  Google Scholar 

  104. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, Schuuring E, Kluin PM (1995) Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 85(9):2528–2536

    CAS  PubMed  Google Scholar 

  105. Muller JR, Janz S, Goedert JJ, Potter M, Rabkin CS (1995) Persistence of immunoglobulin heavy chain/c-myc recombination-positive lymphocyte clones in the blood of human immunodeficiency virus-infected homosexual men. Proc Natl Acad Sci U S A 92(14):6577–6581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Klein G (2000) Dysregulation of lymphocyte proliferation by chromosomal translocations and sequential genetic changes. Bioessays 22(5):414–422. doi:10.1002/(SICI)1521-1878(200005)22:5<414::AID-BIES3>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  107. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350(13):1328–1337. doi:10.1056/NEJMra032015

    Article  CAS  PubMed  Google Scholar 

  108. Rossi G, Bonetti F (2004) EBV and Burkitt’s lymphoma. N Engl J Med 350(25):2621

    Article  CAS  PubMed  Google Scholar 

  109. Thorley-Lawson DA (2004) EBV and Burkitt’s lymphoma. N Engl J Med 350(25):2621

    Article  CAS  Google Scholar 

  110. Kelly GL, Milner AE, Baldwin GS, Bell AI, Rickinson AB (2006) Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc Natl Acad Sci U S A 103(40):14935–14940. doi:10.1073/pnas.0509988103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rowe M, Kelly GL, Bell AI, Rickinson AB (2009) Burkitt’s lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol 19(6):377–388. doi:10.1016/j.semcancer.2009.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schulz TF, Cordes S (2009) Is the Epstein-Barr virus EBNA-1 protein an oncogen? Proc Natl Acad Sci U S A 106(7):2091–2092. doi:10.1073/pnas.0812575106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gromminger S, Mautner J, Bornkamm GW (2012) Burkitt lymphoma: the role of Epstein-Barr virus revisited. Br J Haematol 156(6):719–729

    Article  PubMed  CAS  Google Scholar 

  114. Rickinson AB (2014) Co-infections, inflammation and oncogenesis: future directions for EBV research. Semin Cancer Biol 26:99–115. doi:10.1016/j.semcancer.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  115. Bornkamm GW (2009) Epstein-Barr virus and its role in the pathogenesis of Burkitt’s lymphoma: an unresolved issue. Semin Cancer Biol 19(6):351–365. doi:10.1016/j.semcancer.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  116. Niller HH, Banati F, Ay E, Minarovits J (2012) Epigenetic changes in virus-associated neoplasms. In: Minarovits J, Niller HH (eds) Patho-epigenetics of disease. Springer, New York, pp 179–225

    Chapter  Google Scholar 

  117. Nunes-Alves C (2014) Parasite biology: Piecing it together. Nat Rev Microbiol 12(7):462–463

    Google Scholar 

  118. Piguet PF, Da Laperrousaz C, Vesin C, Donati Y (2001) Incidence of apoptosis in the lymphoid organs of normal or malaria infected mice is decreased in CD18 and urokinase-receptor (UPAR, CD87) deficient mice. Dev Immunol 8(3–4):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kalter SP, Riggs SA, Cabanillas F, Butler JJ, Hagemeister FB, Mansell PW, Newell GR, Velasquez WS, Salvador P, Barlogie B et al (1985) Aggressive non-Hodgkin’s lymphomas in immunocompromised homosexual males. Blood 66(3):655–659

    CAS  PubMed  Google Scholar 

  120. Richard Y, Amiel C, Jeantils V, Mestivier D, Portier A, Dhello G, Feuillard J, Creidy R, Nicolas JC, Raphael M (2010) Changes in blood B cell phenotypes and Epstein-Barr virus load in chronically human immunodeficiency virus-infected patients before and after antiretroviral therapy. J Infect Dis 202(9):1424–1434. doi:10.1086/656479

    Article  CAS  PubMed  Google Scholar 

  121. Millington OR, Di Lorenzo C, Phillips RS, Garside P, Brewer JM (2006) Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function. J Biol 5(2):5. doi:10.1186/jbiol34

    Article  PubMed  PubMed Central  Google Scholar 

  122. Sun T, Holowka T, Song Y, Zierow S, Leng L, Chen Y, Xiong H, Griffith J, Nouraie M, Thuma PE, Lolis E, Janse CJ, Gordeuk VR, Augustijn K, Bucala R (2012) A plasmodium-encoded cytokine suppresses T-cell immunity during malaria. Proc Natl Acad Sci U S A 109(31):E2117–E2126. doi:10.1073/pnas.1206573109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. White CE, Villarino NF, Sloan SS, Ganusov VV, Schmidt NW (2015) Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol 194(2):697–708. doi:10.4049/jimmunol.1401745

    Article  CAS  PubMed  Google Scholar 

  124. Schober T, Framke T, Kreipe H, Schulz TF, Grosshennig A, Hussein K, Baumann U, Pape L, Schubert S, Wingen AM, Jack T, Koch A, Klein C, Maecker-Kolhoff B (2013) Characteristics of early and late PTLD development in pediatric solid organ transplant recipients. Transplantation 95(1):240–246. doi:10.1097/TP.0b013e318277e344

    Article  PubMed  Google Scholar 

  125. Tse E, Kwong YL (2015) Epstein Barr virus-associated lymphoproliferative diseases: the virus as a therapeutic target. Exp Mol Med 47:e136. doi:10.1038/emm.2014.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Babcock GJ, Decker LL, Freeman RB, Thorley-Lawson DA (1999) Epstein-Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 190(4):567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Morscio J, Dierickx D, Tousseyn T (2013) Molecular pathogenesis of B-cell posttransplant lymphoproliferative disorder: what do we know so far? Clin Dev Immunol 2013:150835. doi:10.1155/2013/150835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Petrara MR, Giunco S, Serraino D, Dolcetti R, De Rossi A (2015) Post-transplant lymphoproliferative disorders: from epidemiology to pathogenesis-driven treatment. Cancer Lett 369(1):37–44. doi:10.1016/j.canlet.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  129. Okoye AA, Picker LJ (2013) CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 254(1):54–64. doi:10.1111/imr.12066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Bibas M, Antinori A (2009) EBV and HIV-related lymphoma. Mediterr J Hematol Infect Dis 1(2):e2009032. doi:10.4084/MJHID.2009.032

    PubMed  PubMed Central  Google Scholar 

  131. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF (2009) HIV-associated lymphomas and gamma-herpesviruses. Blood 113(6):1213–1224. doi:10.1182/blood-2008-09-180315

    Article  CAS  PubMed  Google Scholar 

  132. Chene A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q, Falk KI, Orem J, Kironde F, Wahlgren M, Bejarano MT (2007) A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3(6):e80. doi:10.1371/journal.ppat.0030080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Wang D, Liebowitz D, Kieff E (1985) An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43(3 Pt 2):831–840

    Article  CAS  PubMed  Google Scholar 

  134. Kieser A, Sterz KR (2015) The latent membrane protein 1 (LMP1). Curr Top Microbiol Immunol 391:119–149. doi:10.1007/978-3-319-22834-1_4

    PubMed  Google Scholar 

  135. Kempkes B, Robertson ES (2015) Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol 14:138–144. doi:10.1016/j.coviro.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  136. Lajoie V, Lemieux B, Sawan B, Lichtensztejn D, Lichtensztejn Z, Wellinger R, Mai S, Knecht H (2015) LMP1 mediates multinuclearity through downregulation of shelterin proteins and formation of telomeric aggregates. Blood 125(13):2101–2110. doi:10.1182/blood-2014-08-594176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19(18):2100–2110. doi:10.1101/gad.1346005

    Article  PubMed  CAS  Google Scholar 

  138. Knecht H, Righolt C, Mai S (2013) Genomic instability: the driving force behind refractory/relapsing Hodgkin’s lymphoma. Cancers (Basel) 5(2):714–725. doi:10.3390/cancers5020714

    Article  CAS  Google Scholar 

  139. Knecht H, Bruderlein S, Wegener S, Lichtensztejn D, Lichtensztejn Z, Lemieux B, Moller P, Mai S (2010) 3D nuclear organization of telomeres in the Hodgkin cell lines U-HO1 and U-HO1-PTPN1: PTPN1 expression prevents the formation of very short telomeres including “t-stumps”. BMC Cell Biol 11:99. doi:10.1186/1471-2121-11-99

    Article  PubMed  PubMed Central  Google Scholar 

  140. Righolt CH, Guffei A, Knecht H, Young IT, Stallinga S, van Vliet LJ, Mai S (2014) Differences in nuclear DNA organization between lymphocytes, Hodgkin and Reed-Sternberg cells revealed by structured illumination microscopy. J Cell Biochem 115(8):1441–1448. doi:10.1002/jcb.24800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Righolt CH, Knecht H, Mai S (2016) DNA superresolution structure of Reed-Sternberg cells differs between long-lasting remission versus relapsing Hodgkin’s lymphoma patients. J Cell Biochem 117(7):1633–1637. doi:10.1002/jcb.25456

    Article  CAS  PubMed  Google Scholar 

  142. Hansen KD, Sabunciyan S, Langmead B, Nagy N, Curley R, Klein G, Klein E, Salamon D, Feinberg AP (2014) Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization. Genome Res 24(2):177–184. doi:10.1101/gr.157743.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kreck B, Richter J, Ammerpohl O, Barann M, Esser D, Petersen BS, Vater I, Murga Penas EM, Bormann Chung CA, Seisenberger S, Lee Boyd V, Smallwood S, Drexler HG, Macleod RA, Hummel M, Krueger F, Hasler R, Schreiber S, Rosenstiel P, Franke A, Siebert R (2013) Base-pair resolution DNA methylome of the EBV-positive Endemic Burkitt lymphoma cell line DAUDI determined by SOLiD bisulfite-sequencing. Leukemia 27(8):1751–1753. doi:10.1038/leu.2013.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kretzmer H, Bernhart SH, Wang W, Haake A, Weniger MA, Bergmann AK, Betts MJ, Carrillo-de-Santa-Pau E, Doose G, Gutwein J, Richter J, Hovestadt V, Huang B, Rico D, Juhling F, Kolarova J, Lu Q, Otto C, Wagener R, Arnolds J, Burkhardt B, Claviez A, Drexler HG, Eberth S, Eils R, Flicek P, Haas S, Hummel M, Karsch D, Kerstens HH, Klapper W, Kreuz M, Lawerenz C, Lenze D, Loeffler M, Lopez C, MacLeod RA, Martens JH, Kulis M, Martin-Subero JI, Moller P, Nagel I, Picelli S, Vater I, Rohde M, Rosenstiel P, Rosolowski M, Russell RB, Schilhabel M, Schlesner M, Stadler PF, Szczepanowski M, Trumper L, Stunnenberg HG, ICGC MMML-Seq Project, BLUEPRINT Project, Kuppers R, Ammerpohl O, Lichter P, Siebert R, Hoffmann S, Radlwimmer B (2015) DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat Genet 47(11):1316–1325. doi:10.1038/ng.3413

    Article  CAS  PubMed  Google Scholar 

  145. Kulis M, Merkel A, Heath S, Queiros AC, Schuyler RP, Castellano G, Beekman R, Raineri E, Esteve A, Clot G, Verdaguer-Dot N, Duran-Ferrer M, Russinol N, Vilarrasa-Blasi R, Ecker S, Pancaldi V, Rico D, Agueda L, Blanc J, Richardson D, Clarke L, Datta A, Pascual M, Agirre X, Prosper F, Alignani D, Paiva B, Caron G, Fest T, Muench MO, Fomin ME, Lee ST, Wiemels JL, Valencia A, Gut M, Flicek P, Stunnenberg HG, Siebert R, Kuppers R, Gut IG, Campo E, Martin-Subero JI (2015) Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 47(7):746–756. doi:10.1038/ng.3291

    Article  CAS  PubMed  Google Scholar 

  146. Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S, Bruggemann M, Bug S, Calasanz MJ, Deckert M, Dreyling M, Du MQ, Durig J, Dyer MJ, Fan JB, Gesk S, Hansmann ML, Harder L, Hartmann S, Klapper W, Kuppers R, Montesinos-Rongen M, Nagel I, Pott C, Richter J, Roman-Gomez J, Seifert M, Stein H, Suela J, Trumper L, Vater I, Prosper F, Haferlach C, Cruz Cigudosa J, Siebert R (2009) A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One 4(9), e6986. doi:10.1371/journal.pone.0006986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Martin-Subero JI, Kreuz M, Bibikova M, Bentink S, Ammerpohl O, Wickham-Garcia E, Rosolowski M, Richter J, Lopez-Serra L, Ballestar E, Berger H, Agirre X, Bernd HW, Calvanese V, Cogliatti SB, Drexler HG, Fan JB, Fraga MF, Hansmann ML, Hummel M, Klapper W, Korn B, Kuppers R, Macleod RA, Moller P, Ott G, Pott C, Prosper F, Rosenwald A, Schwaenen C, Schubeler D, Seifert M, Sturzenhofecker B, Weber M, Wessendorf S, Loeffler M, Trumper L, Stein H, Spang R, Esteller M, Barker D, Hasenclever D, Siebert R, Molecular Mechanisms in Malignant Lymphomas Network Project of the Deutsche Krebshilfe (2009) New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood 113(11):2488–2497. doi:10.1182/blood-2008-04-152900

    Article  CAS  PubMed  Google Scholar 

  148. Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, Tsao SW, Loh TK, Sun H, Chan AT, Zeng YX, Chan WY, Chan FK, Tao Q (2015) Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics 7(2):155–173. doi:10.2217/epi.14.79

    Article  PubMed  CAS  Google Scholar 

  149. Kaneda A, Matsusaka K, Aburatani H, Fukayama M (2012) Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72(14):3445–3450. doi:10.1158/0008-5472.CAN-11-3919

    Article  CAS  PubMed  Google Scholar 

  150. Lo KW, Chung GT, To KF (2012) Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 22(2):79–86. doi:10.1016/j.semcancer.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  151. Niller HH, Banati F, Minarovits J (2014) Epigenetic alterations in nasopharyngeal carcinoma and Epstein-Barr virus (EBV) associated gastric carcinoma: a lesson in contrasts. J Nasopharyng Carcinoma 1:e9. doi:10.15383/jnpc.9

    Google Scholar 

  152. Yoon YJ, Kim OY, Gho YS (2014) Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 47(10):531–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Meckes DG Jr (2015) Exosomal communication goes viral. J Virol 89(10):5200–5203. doi:10.1128/JVI.02470-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120. doi:10.1016/j.bbalip.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  155. San Lucas FA, Allenson K, Bernard V, Castillo J, Kim DU, Ellis K, Ehli EA, Davies GE, Petersen JL, Li D, Wolff R, Katz M, Varadhachary G, Wistuba I, Maitra A, Alvarez H (2016) Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol 27(4):635–641. doi:10.1093/annonc/mdv604

    Article  CAS  PubMed  Google Scholar 

  156. Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3(5):447–450. doi:10.4161/cib.3.5.12339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, Graff-Meyer A, Genoud C, Martin K, Pizzato N, Voshol J, Morrissey DV, Andaloussi SE, Wood MJ, Meisner-Kober NC (2016) Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol 213(2):173–184. doi:10.1083/jcb.201506084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu Y, Li X (2012) Darwin’s pangenesis and molecular medicine. Trends Mol Med 18(9):506–508. doi:10.1016/j.molmed.2012.07.002

    Article  PubMed  CAS  Google Scholar 

  159. Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H (2013) Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol 87(18):10334–10347. doi:10.1128/JVI.01310-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dukers DF, Meij P, Vervoort MB, Vos W, Scheper RJ, Meijer CJ, Bloemena E, Middeldorp JM (2000) Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165(2):663–670

    Article  CAS  PubMed  Google Scholar 

  161. Flanagan J, Middeldorp J, Sculley T (2003) Localization of the Epstein-Barr virus protein LMP 1 to exosomes. J Gen Virol 84(Pt 7):1871–1879. doi:10.1099/vir.0.18944-0

    Article  CAS  PubMed  Google Scholar 

  162. Ceccarelli S, Visco V, Raffa S, Wakisaka N, Pagano JS, Torrisi MR (2007) Epstein-Barr virus latent membrane protein 1 promotes concentration in multivesicular bodies of fibroblast growth factor 2 and its release through exosomes. Int J Cancer 121(7):1494–1506. doi:10.1002/ijc.22844

    Article  CAS  PubMed  Google Scholar 

  163. Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J (2014) Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33(37):4613–4622. doi:10.1038/onc.2014.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mujcic H, Hill RP, Koritzinsky M, Wouters BG (2014) Hypoxia signaling and the metastatic phenotype. Curr Mol Med 14(5):565–579

    Article  CAS  PubMed  Google Scholar 

  165. Zwaans BM, Lombard DB (2014) Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 7(9):1023–1032. doi:10.1242/dmm.016287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Meckes DG Jr, Shair KH, Marquitz AR, Kung CP, Edwards RH, Raab-Traub N (2010) Human tumor virus utilizes exosomes for intercellular communication. Proc Natl Acad Sci U S A 107(47):20370–20375. doi:10.1073/pnas.1014194107

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ikeda M, Longnecker R (2007) Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 360(2):461–468. doi:10.1016/j.virol.2006.10.046

    Article  CAS  PubMed  Google Scholar 

  168. Ariza ME, Rivailler P, Glaser R, Chen M, Williams MV (2013) Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells. PLoS One 8(7), e69827. doi:10.1371/journal.pone.0069827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N (2013) Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A 110(31):E2925–E2933. doi:10.1073/pnas.1303906110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gutzeit C, Nagy N, Gentile M, Lyberg K, Gumz J, Vallhov H, Puga I, Klein E, Gabrielsson S, Cerutti A, Scheynius A (2014) Exosomes derived from Burkitt’s lymphoma cell lines induce proliferation, differentiation, and class-switch recombination in B cells. J Immunol 192(12):5852–5862. doi:10.4049/jimmunol.1302068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Canitano A, Venturi G, Borghi M, Ammendolia MG, Fais S (2013) Exosomes released in vitro from Epstein-Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. Cancer Lett 337(2):193–199. doi:10.1016/j.canlet.2013.05.012

    Article  CAS  PubMed  Google Scholar 

  172. Ahmed W, Philip PS, Tariq S, Khan G (2014) Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS One 9(6):e99163. doi:10.1371/journal.pone.0099163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ahmed W, Khan G (2014) The labyrinth of interactions of Epstein-Barr virus-encoded small RNAs. Rev Med Virol 24(1):3–14. doi:10.1002/rmv.1763

    Article  CAS  PubMed  Google Scholar 

  174. Skalsky RL, Cullen BR (2015) EBV noncoding RNAs. Curr Top Microbiol Immunol 391:181–217. doi:10.1007/978-3-319-22834-1_6

    PubMed  Google Scholar 

  175. Iwakiri D (2016) Multifunctional non-coding Epstein-Barr virus encoded RNAs (EBERs) contribute to viral pathogenesis. Virus Res 212:30–38. doi:10.1016/j.virusres.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  176. Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K (2009) Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 206(10):2091–2099. doi:10.1084/jem.20081761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Niller HH, Wolf H, Minarovits J (2008) Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity 41(4):298–328. doi:10.1080/08916930802024772

    Article  CAS  PubMed  Google Scholar 

  178. Fujiwara S, Imadome K, Takei M (2015) Modeling EBV infection and pathogenesis in new-generation humanized mice. Exp Mol Med 47:e135. doi:10.1038/emm.2014.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Baglio SR, van Eijndhoven MA, Koppers-Lalic D, Berenguer J, Lougheed SM, Gibbs S, Leveille N, Rinkel RN, Hopmans ES, Swaminathan S, Verkuijlen SA, Scheffer GL, van Kuppeveld FJ, de Gruijl TD, Bultink IE, Jordanova ES, Hackenberg M, Piersma SR, Knol JC, Voskuyl AE, Wurdinger T, Jimenez CR, Middeldorp JM, Pegtel DM (2016) Sensing of latent EBV infection through exosomal transfer of 5′pppRNA. Proc Natl Acad Sci U S A 113(5):E587–E596. doi:10.1073/pnas.1518130113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107(14):6328–6333. doi:10.1073/pnas.0914843107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Lodish HF, Zhou B, Liu G, Chen CZ (2008) Micromanagement of the immune system by microRNAs. Nat Rev Immunol 8(2):120–130. doi:10.1038/nri2252

    Article  CAS  PubMed  Google Scholar 

  182. Gourzones C, Gelin A, Bombik I, Klibi J, Verillaud B, Guigay J, Lang P, Temam S, Schneider V, Amiel C, Baconnais S, Jimenez AS, Busson P (2010) Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J 7:271. doi:10.1186/1743-422X-7-271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Janas T, Janas MM, Sapon K, Janas T (2015) Mechanisms of RNA loading into exosomes. FEBS Lett 589(13):1391–1398. doi:10.1016/j.febslet.2015.04.036

    Article  CAS  PubMed  Google Scholar 

  184. Yoon C, Kim J, Park G, Kim S, Kim D, Hur DY, Kim B, Kim YS (2016) Delivery of miR-155 to retinal pigment epithelial cells mediated by Burkitt’s lymphoma exosomes. Tumour Biol 37(1):313–321. doi:10.1007/s13277-015-3769-4

    Article  CAS  PubMed  Google Scholar 

  185. Szenthe K, Koroknai A, Banati F, Bathori Z, Lozsa R, Burgyan J, Wolf H, Salamon D, Nagy K, Niller HH, Minarovits J (2013) The 5′ regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells. Biochem Biophys Res Commun 433(4):489–495. doi:10.1016/j.bbrc.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  186. Yin Q, Wang X, Roberts C, Flemington EK, Lasky JA (2016) Methylation status and AP1 elements are involved in EBV-mediated miR-155 expression in EBV positive lymphoma cells. Virology 494:158–167. doi:10.1016/j.virol.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  187. Lin Z, Swan K, Zhang X, Cao S, Brett Z, Drury S, Strong MJ, Fewell C, Puetter A, Wang X, Ferris M, Sullivan DE, Li L, Flemington EK (2016) Secreted oral epithelial cell membrane vesicles induce Epstein-Barr virus reactivation in latently infected B cells. J Virol 90(7):3469–3479. doi:10.1128/JVI.02830-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gottschalk S, Rooney CM (2015) Adoptive T-cell immunotherapy. Curr Top Microbiol Immunol 391:427–454. doi:10.1007/978-3-319-22834-1_15

    PubMed  PubMed Central  Google Scholar 

  189. Bollard CM, Aguilar L, Straathof KC, Gahn B, Huls MH, Rousseau A, Sixbey J, Gresik MV, Carrum G, Hudson M, Dilloo D, Gee A, Brenner MK, Rooney CM, Heslop HE (2004) Cytotoxic T lymphocyte therapy for Epstein-Barr virus + Hodgkin’s disease. J Exp Med 200(12):1623–1633. doi:10.1084/jem.20040890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bollard CM, Gottschalk S, Leen AM, Weiss H, Straathof KC, Carrum G, Khalil M, Wu MF, Huls MH, Chang CC, Gresik MV, Gee AP, Brenner MK, Rooney CM, Heslop HE (2007) Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110(8):2838–2845. doi:10.1182/blood-2007-05-091280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, Huls MH, Sheehan A, Wu MF, Liu H, Gee A, Brenner MK, Rooney CM, Heslop HE, Gottschalk S (2010) Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother 33(9):983–990. doi:10.1097/CJI.0b013e3181f3cbf4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chia WK, Teo M, Wang WW, Lee B, Ang SF, Tai WM, Chee CL, Ng J, Kan R, Lim WT, Tan SH, Ong WS, Cheung YB, Tan EH, Connolly JE, Gottschalk S, Toh HC (2014) Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Mol Ther 22(1):132–139. doi:10.1038/mt.2013.242

    Article  CAS  PubMed  Google Scholar 

  193. Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, Carrum G, Ramos C, Fayad L, Shpall EJ, Pro B, Liu H, Wu MF, Lee D, Sheehan AM, Zu Y, Gee AP, Brenner MK, Heslop HE, Rooney CM (2014) Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol 32(8):798–808. doi:10.1200/JCO.2013.51.5304

    Article  CAS  PubMed  Google Scholar 

  194. Manzo T, Heslop HE, Rooney CM (2015) Antigen-specific T cell therapies for cancer. Hum Mol Genet 24(R1):R67–R73. doi:10.1093/hmg/ddv270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dotti G, Savoldo B, Pule M, Straathof KC, Biagi E, Yvon E, Vigouroux S, Brenner MK, Rooney CM (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105(12):4677–4684. doi:10.1182/blood-2004-08-3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Foster AE, Dotti G, Lu A, Khalil M, Brenner MK, Heslop HE, Rooney CM, Bollard CM (2008) Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 31(5):500–505. doi:10.1097/CJI.0b013e318177092b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Perna SK, De Angelis B, Pagliara D, Hasan ST, Zhang L, Mahendravada A, Heslop HE, Brenner MK, Rooney CM, Dotti G, Savoldo B (2013) Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res 19(1):106–117. doi:10.1158/1078-0432.CCR-12-2143

    Article  CAS  PubMed  Google Scholar 

  198. Leen AM, Sukumaran S, Watanabe N, Mohammed S, Keirnan J, Yanagisawa R, Anurathapan U, Rendon D, Heslop HE, Rooney CM, Brenner MK, Vera JF (2014) Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol Ther 22(6):1211–1220. doi:10.1038/mt.2014.47

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21(2):233–240. doi:10.1016/j.coi.2009.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra138. doi:10.1126/scitranslmed.3005930

    Article  CAS  Google Scholar 

  201. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518. doi:10.1056/NEJMoa1215134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ, Amrolia PJ, Hurwitz JL, Brenner MK, Rooney CM (2010) Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115(5):925–935. doi:10.1182/blood-2009-08-239186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. De Angelis B, Dotti G, Quintarelli C, Huye LE, Zhang L, Zhang M, Pane F, Heslop HE, Brenner MK, Rooney CM, Savoldo B (2009) Generation of Epstein-Barr virus-specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood 114(23):4784–4791. doi:10.1182/blood-2009-07-230482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Brewin J, Mancao C, Straathof K, Karlsson H, Samarasinghe S, Amrolia PJ, Pule M (2009) Generation of EBV-specific cytotoxic T cells that are resistant to calcineurin inhibitors for the treatment of posttransplantation lymphoproliferative disease. Blood 114(23):4792–4803. doi:10.1182/blood-2009-07-228387

    Article  CAS  PubMed  Google Scholar 

  205. Huye LE, Nakazawa Y, Patel MP, Yvon E, Sun J, Savoldo B, Wilson MH, Dotti G, Rooney CM (2011) Combining mTor inhibitors with rapamycin-resistant T cells: a two-pronged approach to tumor elimination. Mol Ther 19(12):2239–2248. doi:10.1038/mt.2011.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Ricciardelli I, Blundell MP, Brewin J, Thrasher A, Pule M, Amrolia PJ (2014) Towards gene therapy for EBV-associated posttransplant lymphoma with genetically modified EBV-specific cytotoxic T cells. Blood 124(16):2514–2522. doi:10.1182/blood-2014-01-553362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Moosmann A, Bigalke I, Tischer J, Schirrmann L, Kasten J, Tippmer S, Leeping M, Prevalsek D, Jaeger G, Ledderose G, Mautner J, Hammerschmidt W, Schendel DJ, Kolb HJ (2010) Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood 115(14):2960–2970. doi:10.1182/blood-2009-08-236356

    Article  CAS  PubMed  Google Scholar 

  208. Icheva V, Kayser S, Wolff D, Tuve S, Kyzirakos C, Bethge W, Greil J, Albert MH, Schwinger W, Nathrath M, Schumm M, Stevanovic S, Handgretinger R, Lang P, Feuchtinger T (2013) Adoptive transfer of Epstein-Barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol 31(1):39–48. doi:10.1200/JCO.2011.39.8495

    Article  CAS  PubMed  Google Scholar 

  209. Gerdemann U, Katari UL, Papadopoulou A, Keirnan JM, Craddock JA, Liu H, Martinez CA, Kennedy-Nasser A, Leung KS, Gottschalk SM, Krance RA, Brenner MK, Rooney CM, Heslop HE, Leen AM (2013) Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther 21(11):2113–2121. doi:10.1038/mt.2013.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, Burns D, McAulay K, Turner M, Bellamy C, Amlot PL, Kelly D, MacGilchrist A, Gandhi MK, Swerdlow AJ, Crawford DH (2007) Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110(4):1123–1131. doi:10.1182/blood-2006-12-063008

    Article  CAS  PubMed  Google Scholar 

  211. Doubrovina E, Oflaz-Sozmen B, Prockop SE, Kernan NA, Abramson S, Teruya-Feldstein J, Hedvat C, Chou JF, Heller G, Barker JN, Boulad F, Castro-Malaspina H, George D, Jakubowski A, Koehne G, Papadopoulos EB, Scaradavou A, Small TN, Khalaf R, Young JW, O’Reilly RJ (2012) Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119(11):2644–2656. doi:10.1182/blood-2011-08-371971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH, Kapoor N, Pai SY, Rowley SD, Kebriaei P, Dey BR, Grilley BJ, Gee AP, Brenner MK, Rooney CM, Heslop HE (2013) Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121(26):5113–5123. doi:10.1182/blood-2013-02-486324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janos Minarovits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Minarovits, J., Niller, H.H. (2017). Current Trends and Alternative Scenarios in EBV Research. In: Minarovits, J., Niller, H. (eds) Epstein Barr Virus. Methods in Molecular Biology, vol 1532. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6655-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6655-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6653-0

  • Online ISBN: 978-1-4939-6655-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics