Piloting Your Nanovehicle to Overcome Biological Barriers

  • Steven M. Richards
  • Robert B. CampbellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1530)


Designing an effective nanoparticle for selective drug transport requires careful consideration of the complex biological barriers encountered in transit to the desired target. Here, we review several of these barriers, and provide possible methods for formulating liposomal nanoparticles to overcome them. The methods include the biotinylation of an antibody, and subsequent conjugation to a PEGylated cationic lipid nanoparticle. Additionally, the incorporation of drug, and other relevant characteristics of the nanoparticle are also discussed.

Key words

Nanoparticles Liposomes Barriers Bevacizumab Angiogenesis Drug resistance Drug carriers Drug delivery systems 


  1. 1.
    Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3(2):123–193PubMedGoogle Scholar
  2. 2.
    Drummond DC, Meyer O, Hong K et al (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51(4):691–743PubMedGoogle Scholar
  3. 3.
    Gregoriadis G (1988) Liposomes as drug carriers: recent trends and progress. Wiley, ChichesterGoogle Scholar
  4. 4.
    Patel HM, Moghimi SM (1998) Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity. Adv Drug Deliv Rev 32(1–2):45–60, S0169-409X(97)00131-2 [pii]PubMedGoogle Scholar
  5. 5.
    Papahadjopoulos D, Allen TM, Gabizon A et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88(24):11460–11464CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–30CrossRefPubMedGoogle Scholar
  7. 7.
    Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756PubMedGoogle Scholar
  8. 8.
    Seymour LW (1992) Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9(2):135–187PubMedGoogle Scholar
  9. 9.
    Huang SK, Mayhew E, Gilani S et al (1992) Pharmacokinetics and therapeutics of sterically stabilized liposomes in mice bearing C-26 colon carcinoma. Cancer Res 52(24):6774–6781PubMedGoogle Scholar
  10. 10.
    Jain RK (1989) Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 81(8):570–576CrossRefPubMedGoogle Scholar
  11. 11.
    Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50(3 Suppl):814–819Google Scholar
  12. 12.
    Lipinski CA, Lombardo F, Dominy BW et al (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17CrossRefGoogle Scholar
  13. 13.
    Laouini A, Jaafar-Maalej C, Limayem-Blouza I et al (2012) Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol 1(2):147–168CrossRefGoogle Scholar
  14. 14.
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941–951CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kuesters GM, Campbell RB (2010) Conjugation of bevacizumab to cationic liposomes enhances their tumor-targeting potential. Nanomedicine 5(2):181–192CrossRefPubMedGoogle Scholar
  16. 16.
    Rodriguez PL, Harada T, Christian DA et al (2013) Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975. doi: 10.1126/science.1229568 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caffrey M (1993) LIPIDAT a database of thermo data and association information on lipid. CRC Press, Boca RatonGoogle Scholar
  18. 18.
    Barnadas-Rodriguez R, Sabés M (2001) Factors involved in the production of liposomes with a high-pressure homogenizer. Int J Pharm 213(1):175–186CrossRefPubMedGoogle Scholar
  19. 19.
    de Paula Rigoletto T, Silva CL, Santana MHA et al (2012) Effects of extrusion, lipid concentration and purity on physico-chemical and biological properties of cationic liposomes for gene vaccine applications. J Microencapsul 29(8):759–769CrossRefPubMedGoogle Scholar
  20. 20.
    Pupo E, Padrón A, Santana E et al (2005) Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J Control Release 104(2):379–396CrossRefPubMedGoogle Scholar
  21. 21.
    Wagner A, Vorauer-Uhl K (2011) Liposome technology for industrial purposes. J Drug Deliv 2011:591325. doi: 10.1155/2011/591325 CrossRefPubMedGoogle Scholar
  22. 22.
    Mayer LD, Tai LC, Bally MB et al (1990) Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta Biomembranes 1025(2):143–151CrossRefGoogle Scholar
  23. 23.
    van Etten EW, ten Kate MT, Stearne LE et al (1995) Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. Antimicrob Agents Chemother 39(9):1954–1958CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kan P, Tsao CW, Wang AJ et al (2011) A liposomal formulation able to incorporate a high content of Paclitaxel and exert promising anticancer effect. J Drug Deliv 2011:629234. doi: 10.1155/2011/629234 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesMCPHS UniversityWorcesterUSA

Personalised recommendations