Skip to main content

Pulmonary Delivery of Magnetically Targeted Nano-in-Microparticles

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1530))

Abstract

This chapter details the intratracheal delivery of dry powder microparticles termed nano-in-microparticles (NIMs) for the purpose of in vivo targeted pulmonary drug delivery. The dry powder NIMs technology improves on previous inhaled chemotherapy platforms designed as liquid formulations. Dry powder microparticles were created through the process of spray drying; a protocol detailing the formulation of NIMs dry powder is included as a separate chapter in this book. Dry powder NIMs containing fluorescent nanoparticles and magnetically-responsive superparamagnetic iron oxide nanoparticles are intratracheally delivered (insufflated) in the presence of a magnetic field and targeted to the left lung of mice. The targeting efficiency of dry powder NIMs is compared to the targeting efficiency of liquid NIMs to demonstrate the superiority of dry power targeting platforms. Targeting is assessed using fluorescence associated with NIMs detected in the mouse trachea, left lung, and right lung by an in vivo imaging system.

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labiris NR, Dolovich MB (2003) Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 56:588–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wolff RK (1998) Safety of inhaled proteins for therapeutic use. J Aerosol Med 11:197–219. doi:10.1089/jam.1998.11.197

    Article  CAS  PubMed  Google Scholar 

  3. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74. doi:10.1038/nrd2153

    Article  CAS  PubMed  Google Scholar 

  4. Agnew JE, Pavia D, Clarke SW (1981) Airways penetration of inhaled radioaerosol: an index to small airways function? Eur J Respir Dis 62:239–255

    CAS  PubMed  Google Scholar 

  5. McBride AA, Price DN, Lamoureux LR et al (2013) Preparation and characterization of novel magnetic nano-in-microparticles for site-specific pulmonary drug delivery. Mol Pharm 10:3574–3581. doi:10.1021/mp3007264

    Article  CAS  PubMed  Google Scholar 

  6. Sharma S, White D, Imondi AR et al (2001) Development of inhalational agents for oncologic use. J Clin Oncol 19:1839–1847

    CAS  PubMed  Google Scholar 

  7. Azarmi S, Tao X, Chen H et al (2006) Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm 319:155–161. doi:10.1016/j.ijpharm.2006.03.052

    Article  CAS  PubMed  Google Scholar 

  8. Tseng C-L, Su W-Y, Yen K-C et al (2009) The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 30:3476–3485. doi:10.1016/j.biomaterials.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  9. Rao R, Markovic S, Anderson P (2003) Aerosol therapy for malignancy involving the lungs. Curr Cancer Drug Targets 3:239–250. doi:10.2174/1568009033481895

    Article  CAS  PubMed  Google Scholar 

  10. Hershey AE, Kurzman ID, Forrest LJ et al (1999) Inhalation chemotherapy for macroscopic primary or metastatic lung tumors: proof of principle using dogs with spontaneously occurring tumors as a model. Clin Cancer Res 5:2653–2659

    CAS  PubMed  Google Scholar 

  11. Dames P, Gleich B, Flemmer A et al (2007) Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2:495–499. doi:10.1038/nnano.2007.217

    Article  PubMed  Google Scholar 

  12. Hasenpusch G, Geiger J, Wagner K et al (2012) Magnetized aerosols comprising superparamagnetic iron oxide nanoparticles improve targeted drug and gene delivery to the lung. Pharm Res 29:1308–1318. doi:10.1007/s11095-012-0682-z

    Article  CAS  PubMed  Google Scholar 

  13. Gagnadoux F, Hureaux J, Vecellio L et al (2008) Aerosolized chemotherapy. J Aerosol Med Pulm Drug Deliv 21:61–70. doi:10.1089/jamp.2007.0656

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez CO, Crabbs TA, Wilson DW et al (2010) Aerosol gemcitabine: preclinical safety and in vivo antitumor activity in osteosarcoma-bearing dogs. J Aerosol Med Pulm Drug Deliv 23:197–206. doi:10.1089/jamp.2009.0773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yi D, Wiedmann TS (2010) Inhalation adjuvant therapy for lung cancer. J Aerosol Med Pulm Drug Deliv 23:181–187. doi:10.1089/jamp.2009.0787

    Article  PubMed  Google Scholar 

  16. Otterson GA, Villalona-Calero MA, Sharma S et al (2007) Phase I study of inhaled Doxorubicin for patients with metastatic tumors to the lungs. Clin Cancer Res 13:1246–1252. doi:10.1158/1078-0432.CCR-06-1096

    Article  CAS  PubMed  Google Scholar 

  17. Otterson GA, Villalona-Calero MA, Hicks W et al (2010) Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non-small cell lung cancer. Clin Cancer Res 16:2466–2473. doi:10.1158/1078-0432.CCR-09-3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tatsumura T, Koyama S, Tsujimoto M et al (1993) Further study of nebulisation chemotherapy, a new chemotherapeutic method in the treatment of lung carcinomas: fundamental and clinical. Br J Cancer 68:1146–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zarogoulidis P, Darwiche K, Krauss L et al (2013) Inhaled cisplatin deposition and distribution in lymph nodes in stage II lung cancer patients. Future Oncol 9:1307–1313. doi:10.2217/fon.13.111

    Article  CAS  PubMed  Google Scholar 

  20. Lemarie E, Vecellio L, Hureaux J et al (2011) Aerosolized gemcitabine in patients with carcinoma of the lung: feasibility and safety study. J Aerosol Med Pulm Drug Deliv 24:261–270. doi:10.1089/jamp.2010.0872

    Article  CAS  PubMed  Google Scholar 

  21. Tatsumura T, Yamamoto K, Murakami A et al (1983) New chemotherapeutic method for the treatment of tracheal and bronchial cancers—nebulization chemotherapy. Gan No Rinsho 29:765–770

    CAS  PubMed  Google Scholar 

  22. Hitzman CJ, Elmquist WF, Wattenberg LW, Wiedmann TS (2006) Development of a respirable, sustained release microcarrier for 5-fluorouracil I: in vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J Pharm Sci 95:1114–1126. doi:10.1002/jps.20591

    Article  CAS  PubMed  Google Scholar 

  23. Azarmi S, Lobenberg R, Roa WH et al (2008) Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Dev Ind Pharm 34:943–947. doi:10.1080/03639040802149079

    Article  CAS  PubMed  Google Scholar 

  24. Gerrity TR, Lee PS, Hass FJ et al (1979) Calculated deposition of inhaled particles in the airway generations of normal subjects. J Appl Physiol 47:867–873

    CAS  PubMed  Google Scholar 

  25. Morello M, Krone CL, Dickerson S et al (2009) Dry-powder pulmonary insufflation in the mouse for application to vaccine or drug studies. Tuberculosis (Edinb) 89:371–377. doi:10.1016/j.tube.2009.07.001

    Article  CAS  Google Scholar 

  26. Hoppentocht M, Hoste C, Hagedoorn P et al (2014) In vitro evaluation of the DP-4M PennCentury insufflator. Eur J Pharm Biopharm 88:153–159. doi:10.1016/j.ejpb.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  27. Duret C, Wauthoz N, Sebti T et al (2012) Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties. Int J Pharm 428:103–113. doi:10.1016/j.ijpharm.2012.03.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the University of New Mexico Health Science Center Research and Allocations Committee (RAC) grant. AAM was supported by NSF-IGERT Integrating Nanotechnology with Cell Biology and Neuroscience Fellowship (DGE-0549500) and the NCI Alliance for Nanotechnology in Cancer New Mexico CNTC Training Center. DNP was supported by Bill and Melinda Gates Grand Challenge Exploration (No OPP1061393) and UNM IDIP T32 training grant (T32-A1007538, P.I.– M. Ozbun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Muttil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

McBride, A.A., Price, D.N., Muttil, P. (2017). Pulmonary Delivery of Magnetically Targeted Nano-in-Microparticles. In: Zeineldin, R. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 1530. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6646-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6646-2_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6644-8

  • Online ISBN: 978-1-4939-6646-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics