Skip to main content

Evolution-Inspired Computational Design of Symmetric Proteins

  • Protocol
  • First Online:
Book cover Computational Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1529))

Abstract

Monomeric proteins with a number of identical repeats creating symmetrical structures are potentially very valuable building blocks with a variety of bionanotechnological applications. As such proteins do not occur naturally, the emerging field of computational protein design serves as an excellent tool to create them from nonsymmetrical templates. Existing pseudo-symmetrical proteins are believed to have evolved from oligomeric precursors by duplication and fusion of identical repeats. Here we describe a computational workflow to reverse-engineer this evolutionary process in order to create stable proteins consisting of identical sequence repeats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29:105–153. doi:10.1146/annurev.biophys.29.1.105

    Article  CAS  PubMed  Google Scholar 

  2. Caetano-Anolles G, Wang M, Caetano-Anolles D, Mittenthal JE (2009) The origin, evolution and structure of the protein world. Biochem J 417(3):621–637. doi:10.1042/BJ20082063

    Article  CAS  PubMed  Google Scholar 

  3. Jorda J, Xue B, Uversky VN, Kajava AV (2010) Protein tandem repeats—the more perfect, the less structured. FEBS J 277(12):2673–2682. doi:10.1111/j.1742-464X.2010.07684.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jorda J, Kajava AV (2010) Protein homorepeats sequences, structures, evolution, and functions. Adv Protein Chem Struct Biol 79:59–88. doi:10.1016/S1876-1623(10)79002-7

    Article  CAS  PubMed  Google Scholar 

  5. Kinch LN, Grishin NV (2002) Evolution of protein structures and functions. Curr Opin Struct Biol 12(3):400–408

    Article  CAS  PubMed  Google Scholar 

  6. Brych SR, Dubey VK, Bienkiewicz E, Lee J, Logan TM, Blaber M (2004) Symmetric primary and tertiary structure mutations within a symmetric superfold: a solution, not a constraint, to achieve a foldable polypeptide. J Mol Biol 344(3):769–780. doi:10.1016/j.jmb.2004.09.060

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Zheng F, Grigoryan G (2014) Design and designability of protein-based assemblies. Curr Opin Struct Biol 27:79–86. doi:10.1016/j.sbi.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  8. Sawyer N, Chen J, Regan L (2013) All repeats are not equal: a module-based approach to guide repeat protein design. J Mol Biol 425(10):1826–1838. doi:10.1016/j.jmb.2013.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pluckthun A (2015) Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 55:489–511. doi:10.1146/annurev-pharmtox-010611-134654

    Article  CAS  PubMed  Google Scholar 

  10. Park K, Shen BW, Parmeggiani F, Huang PS, Stoddard BL, Baker D (2015) Control of repeat-protein curvature by computational protein design. Nat Struct Mol Biol 22(2):167–174. doi:10.1038/nsmb.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parmeggiani F, Huang PS, Vorobiev S, Xiao R, Park K, Caprari S, Su M, Seetharaman J, Mao L, Janjua H, Montelione GT, Hunt J, Baker D (2015) A general computational approach for repeat protein design. J Mol Biol 427(2):563–575. doi:10.1016/j.jmb.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  12. Thomson AR, Wood CW, Burton AJ, Bartlett GJ, Sessions RB, Brady RL, Woolfson DN (2014) Computational design of water-soluble alpha-helical barrels. Science 346(6208):485–488. doi:10.1126/science.1257452

    Article  CAS  PubMed  Google Scholar 

  13. Lanci CJ, MacDermaid CM, Kang SG, Acharya R, North B, Yang X, Qiu XJ, DeGrado WF, Saven JG (2012) Computational design of a protein crystal. Proc Natl Acad Sci U S A 109(19):7304–7309. doi:10.1073/pnas.1112595109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Broom A, Doxey AC, Lobsanov YD, Berthin LG, Rose DR, Howell PL, McConkey BJ, Meiering EM (2012) Modular evolution and the origins of symmetry: reconstruction of a three-fold symmetric globular protein. Structure 20(1):161–171. doi:10.1016/j.str.2011.10.021

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Blaber SI, Dubey VK, Blaber M (2011) A polypeptide “building block” for the beta-trefoil fold identified by “top-down symmetric deconstruction”. J Mol Biol 407(5):744–763. doi:10.1016/j.jmb.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  16. Paoli M (2001) Protein folds propelled by diversity. Prog Biophys Mol Biol 76(1–2):103–130

    Article  CAS  PubMed  Google Scholar 

  17. Voet AR, Noguchi H, Addy C, Simoncini D, Terada D, Unzai S, Park SY, Zhang KY, Tame JR (2014) Computational design of a self-assembling symmetrical beta-propeller protein. Proc Natl Acad Sci U S A 111(42):15102–15107. doi:10.1073/pnas.1412768111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voet AR, Noguchi H, Addy C, Zhang KY, Tame JR (2015) Biomineralization of a cadmium chloride nano-crystal by a designed symmetrical protein. Angew Chem Int Ed Engl. doi:10.1002/anie.201503575R1

    PubMed  Google Scholar 

  19. Delano WL (2010) The PyMOL molecular graphics system, version 1.3. Schrödinger, LLC

    Google Scholar 

  20. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  21. Gille C (2005) STRAP. http://www.bioinformatics.com/STRAP

  22. Retief JD (2000) Phylogenetic analysis using PHYLIP. Methods Mol Biol 132:243–258

    CAS  PubMed  Google Scholar 

  23. Ashkenazy H, Penn O, Doron-Faigenboim A, Cohen O, Cannarozzi G, Zomer O, Pupko T (2012) FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Res 40(web server issue):W580–W584. doi:10.1093/nar/gks498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010) Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry 49(14):2987–2998. doi:10.1021/bi902153g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26(5):689–691. doi:10.1093/bioinformatics/btq007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andreeva A, Howorth D, Chothia C, Kulesha E, Murzin AG (2015) Investigating protein structure and evolution with SCOP2. Curr Protoc Bioinformatics 49:1.26.1–1.26.21. doi:10.1002/0471250953.bi0126s49

    Article  Google Scholar 

Download references

Acknowledgements

AV acknowledges RIKEN’s program for Junior Scientists for the FPR fellowship and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnout R. D. Voet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Voet, A.R.D., Simoncini, D., Tame, J.R.H., Zhang, K.Y.J. (2017). Evolution-Inspired Computational Design of Symmetric Proteins. In: Samish, I. (eds) Computational Protein Design. Methods in Molecular Biology, vol 1529. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6637-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6637-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6635-6

  • Online ISBN: 978-1-4939-6637-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics