Skip to main content

OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design

  • Protocol
  • First Online:
Computational Protein Design

Abstract

Drug resistance in protein targets is an increasingly common phenomenon that reduces the efficacy of both existing and new antibiotics. However, knowledge of future resistance mutations during pre-clinical phases of drug development would enable the design of novel antibiotics that are robust against not only known resistant mutants, but also against those that have not yet been clinically observed. Computational structure-based protein design (CSPD) is a transformative field that enables the prediction of protein sequences with desired biochemical properties such as binding affinity and specificity to a target. The use of CSPD to predict previously unseen resistance mutations represents one of the frontiers of computational protein design. In a recent study (Reeve et al. Proc Natl Acad Sci U S A 112(3):749–754, 2015), we used our osprey (Open Source Protein REdesign for You) suite of CSPD algorithms to prospectively predict resistance mutations that arise in the active site of the dihydrofolate reductase enzyme from methicillin-resistant Staphylococcus aureus (SaDHFR) in response to selective pressure from an experimental competitive inhibitor. We demonstrated that our top predicted candidates are indeed viable resistant mutants. Since that study, we have significantly enhanced the capabilities of osprey with not only improved modeling of backbone flexibility, but also efficient multi-state design, fast sparse approximations, partitioned continuous rotamers for more accurate energy bounds, and a computationally efficient representation of molecular-mechanics and quantum-mechanical energy functions. Here, using SaDHFR as an example, we present a protocol for resistance prediction using the latest version of osprey. Specifically, we show how to use a combination of positive and negative design to predict active site escape mutations that maintain the enzyme’s catalytic function but selectively ablate binding of an inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dale GE, Broger C, D’Arcy A, Hartman PG, DeHoogt R, Jolidon S, Kompis I, Labhardt AM, Langen H, Locher H, Page MG, Stüber D, Then RL, Wipf B, Oefner C (1997) A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol 266(1):23–30

    Article  CAS  PubMed  Google Scholar 

  2. Georgiev I, Lilien RH, Donald BR (2008) The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J Comput Chem 29(10):1527–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Donald BR (2011) Algorithms in structural molecular biology. MIT Press, Cambridge

    Google Scholar 

  4. Gainza P, Roberts KE, Donald BR (2012) Protein design using continuous rotamers. PLoS Comput Biol 8(1):e1002335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hallen MA, Keedy DA, Donald BR (2013) Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility. Proteins 81(1):18–39

    Article  CAS  PubMed  Google Scholar 

  6. Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA, Chen C-Y, Reza F, Anderson AC, Richardson DC, Richardson JS, Donald BR (2013) OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol 523:87–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hallen MA, Donald BR (2015) COMETS (constrained optimization of multistate energies by tree search): a provable and efficient algorithm to optimize binding affinity and specificity with respect to sequence. Research in computational molecular biology (RECOMB), vol 9029. Springer, Cham, pp 122–135

    Google Scholar 

  8. Jou J, Jain S, Georgiev I, Donald BR (2015) BWM*: a novel, provable, ensemble-based dynamic programming algorithm for sparse approximations of computational protein design. Research in computational molecular biology (RECOMB), vol 9029. Springer, Cham, pp 154–166

    Google Scholar 

  9. Hallen MA, Gainza P, Donald BR (2015) Compact representation of continuous energy surfaces for more efficient protein design. J Chem Theory Comput 11(5):2292–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frey KM, Georgiev I, Donald BR, Anderson AC (2010) Predicting resistance mutations using protein design algorithms. Proc Natl Acad Sci U S A 107(31):13707–13712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reeve SM, Gainza P, Frey KM, Georgiev I, Donald BR, Anderson AC (2015) Protein design algorithms predict viable resistance to an experimental antifolate. Proc Natl Acad Sci U S A 112(3):749–754

    Article  CAS  PubMed  Google Scholar 

  12. Stevens BW, Lilien RH, Georgiev I, Donald BR, Anderson AC (2006) Redesigning the PheA domain of gramicidin synthetase leads to a new understanding of the enzyme’s mechanism and selectivity. Biochemistry 45(51):15495–15504

    Article  CAS  PubMed  Google Scholar 

  13. Chen C-Y, Georgiev I, Anderson AC, Donald BR (2009) Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci U S A 106(10):3764–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Georgiev I, Schmidt S, Li Y, Wycuff D, Ofek G, Doria-Rose N, Luongo T, Yang Y, Zhou T, Donald BR, Mascola J, Kwong P (2012) Design of epitope-specific probes for sera analysis and antibody isolation. Retrovirology 9:50

    Article  Google Scholar 

  15. Roberts KE, Cushing PR, Boisguerin P, Madden DR, Donald BR (2012) Computational design of a PDZ domain peptide inhibitor that rescues CFTR activity. PLoS Comput Biol 8(4):e1002477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gorczynski MJ, Grembecka J, Zhou Y, Kong Y, Roudaia L, Douvas MG, Newman M, Bielnicka I, Baber G, Corpora T, Shi J, Sridharan M, Lilien R, Donald BR, Speck NA, Brown ML, Bushweller JH (2007) Allosteric inhibition of the protein-protein interaction between the leukemia-associated proteins Runx1 and CBFbeta. Chem Biol 14(10):1186–1197

    Article  CAS  PubMed  Google Scholar 

  17. Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, O’Dell S, Chuang G-Y, Yang Z-Y, Ofek G, Connors M, Mascola JR, Nabel GJ, Kwong PD (2014) Antibodies VRC01 and 10E8 neutralize HIV-1 with high breadth and potency even with IG-framework regions substantially reverted to germline. J Immunol 192(3):1100–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rudicell RS, Kwon YD, Ko S-Y, Pegu A, Louder MK, Georgiev IS, Wu X, Zhu J, Boyington JC, Chen X, Shi W, Yang Z-Y, Doria-Rose NA, McKee K, O’Dell S, Schmidt SD, Chuang G-Y, Druz A, Soto C, Yang Y, Zhang B, Zhou T, Todd J-P, Lloyd KE, Eudailey J, Roberts KE, Donald BR, Bailer RT, Ledgerwood J, NISC Comparative Sequencing Program, Mullikin JC, Shapiro L, Koup RA, Graham BS, Nason MC, Connors M, Haynes BF, Rao SS, Roederer M, Kwong PD, Mascola JR, Nabel GJ (2014) Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 88(21):12669–12682

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parker AS, Choi Y, Griswold KE, Bailey-Kellogg C (2013) Structure-guided deimmunization of therapeutic proteins. J Comput Biol 20(2):152–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salvat RS, Choi Y, Bishop A, Bailey-Kellogg C, Griswold KE (2015) Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads. Biotechnol Bioeng 112(7):1306–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao H, Verma D, Li W, Choi Y, Ndong C, Fiering SN, Bailey-Kellogg C, Griswold KE (2015) Depletion of T cell epitopes in lysostaphin mitigates anti-drug antibody response and enhances antibacterial efficacy in vivo. Chem Biol 22(5):629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pierce NA, Winfree E (2002) Protein design is np-hard. Protein Eng 15(10):779–782

    Article  CAS  PubMed  Google Scholar 

  24. Jiang X, Farid H, Pistor E, Farid RS (2000) A new approach to the design of uniquely folded thermally stable proteins. Protein Sci 9(2):403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A 97(19):10383–10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frey KM, Lombardo MN, Wright DL, Anderson AC (2010) Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase aureus dihydrofolate reductase. J Struct Biol 170(1):93–97

    Article  CAS  PubMed  Google Scholar 

  27. Frey KM, Liu J, Lombardo MN, Bolstad DB, Wright DL, Anderson AC (2009) Crystal structures of wild-type and mutant methicillin-resistant Staphylococcus aureus dihydrofolate reductase reveal an alternate conformation of NADPH that may be linked to trimethoprim resistance. J Mol Biol 387(5):1298–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frey KM, Viswanathan K, Wright DL, Anderson AC (2012) Prospective screening of novel antibacterial inhibitors of dihydrofolate reductase for mutational resistance. Antimicrob Agents Chemother 56(7):3556–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins 40(3):389–408

    Article  CAS  PubMed  Google Scholar 

  30. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Amber: a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(42):1–41

    Article  CAS  Google Scholar 

  31. Lazaridis T, Karplus M (1999) Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J Mol Biol 288(3):477–487

    Article  CAS  PubMed  Google Scholar 

  32. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4:100–114

    Article  Google Scholar 

  33. Desmet J, De Maeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356(6369):539–542

    Google Scholar 

  34. Goldstein RF (1994) Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J 66(5):1335–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roberts KE, Donald BR (2015) Improved energy bound accuracy enhances the efficiency of continuous protein design. Proteins 83(6):1151–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Mark Hallen and Kyle Roberts for thoughtful suggestions and technical assistance. This work was supported by NIH grant R01 GM-78031 to B.R.D., R01 AI-111957 to A.C.A., and A.O. was supported in part by NSF Graduate Research Fellowships Program Award 1106401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Donald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ojewole, A. et al. (2017). OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design. In: Samish, I. (eds) Computational Protein Design. Methods in Molecular Biology, vol 1529. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6637-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6637-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6635-6

  • Online ISBN: 978-1-4939-6637-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics