Antibiotics pp 133-143 | Cite as

Determination of Bacterial Membrane Impairment by Antimicrobial Agents

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)

Abstract

The bacterial cytoplasmic membrane separates the cell from its environment and acts as a selective permeability barrier. In addition, it functions in energy conservation, transport, and biosynthesis processes. Antimicrobial agents disrupting these functions may lead to pleiotropic effects, including leakage of low molecular weight compounds such as ions, amino acids and ATP, and subsequent membrane depolarization. This article describes two techniques to assess antibiotic-induced membrane impairment in vivo.

Key words

Membrane permeabilization Membrane potential Depolarization Tetraphenylphosphonium bromide Potassium efflux 

References

  1. 1.
    Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779CrossRefPubMedGoogle Scholar
  2. 2.
    Müller A, Ulm H, Reder-Christ K, Sahl HG, Schneider T (2012) Interaction of type A lantibiotics with undecaprenol-bound cell envelope precursors. Microb Drug Resist 18:261–270CrossRefPubMedGoogle Scholar
  3. 3.
    Ruhr E, Sahl HG (1985) Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother 27:841–845CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sahl HG (1985) Influence of the staphylococcin-like peptide Pep 5 on membrane potential of bacterial cells and cytoplasmic membrane vesicles. J Bacteriol 162:833–836PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wilmes M, Stockem M, Bierbaum G, Schlag M, Götz F, Tran DQ, Schaal JB, Ouellette AJ, Selsted ME, Sahl HG (2014) Killing of staphylococci by theta-defensins involves membrane impairment and activation of autolytic enzymes. Antibiotics (Basel) 3:617–631CrossRefGoogle Scholar
  6. 6.
    Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076–1078CrossRefPubMedGoogle Scholar
  7. 7.
    Grinius LL, Jasaitis AA, Kadziauskas YP, Liberman EA, Skulachev VP, Topali VP, Tsofina LM, Vladimirova MA (1970) Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim Biophys Acta 216:1–12CrossRefPubMedGoogle Scholar
  8. 8.
    Bakeeva LE, Grinius LL, Jasaitis AA, Kuliene VV, Levitsky DO, Liberman EA, Severina II, Skulachev VP (1970) Conversion of biomembrane-produced energy into electric form. II. Intact mitochondria. Biochim Biophys Acta 216:13–21CrossRefPubMedGoogle Scholar
  9. 9.
    Schuldiner S, Kaback HR (1975) Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14:5451–5461CrossRefPubMedGoogle Scholar
  10. 10.
    Szmelcman S, Adler J (1976) Change in membrane potential during bacterial chemotaxis. Proc Natl Acad Sci U S A 73:4387–4391CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tokuda H, Konisky J (1978) Mode of action of colicin Ia: effect of colicin on the Escherichia coli proton electrochemical gradient. Proc Natl Acad Sci U S A 75:2579–2583CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weiss MJ, Luria SE (1978) Reduction of membrane potential, an immediate effect of colicin K. Proc Natl Acad Sci U S A 75:2483–2487CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shabala L, Bowman J, Brown J, Ross T, McMeekin T, Shabala S (2009) Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. Environ Microbiol 11:137–148CrossRefPubMedGoogle Scholar
  14. 14.
    Baba T, Takeuchi F, Kuroda M, Ito T, Yuzawa H, Hiramatsu K (2004) The Staphylococcus aureus genome. In: Aldeen DA, Hiramatsu K (eds) Staphylococcus aureus: molecular and clinical aspects. Horwood Publishing, Chichester, UK, pp 66–145CrossRefGoogle Scholar
  15. 15.
    Orlov DS, Nguyen T, Lehrer RI (2002) Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 49:325–328CrossRefPubMedGoogle Scholar
  16. 16.
    Kashket ER, Blanchard AG, Metzger WC (1980) Proton motive force during growth of Streptococcus lactis cells. J Bacteriol 143:128–134PubMedPubMedCentralGoogle Scholar
  17. 17.
    Miller JB, Koshland DE Jr (1977) Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Proc Natl Acad Sci U S A 74:4752–4756CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Griniuviene B, Chmieliauskaite V, Grinius L (1974) Energy-linked transport of permeant ions in Escherichia coli cells: evidence for membrane potential generation by proton-pump. Biochem Biophys Res Commun 56:206–213CrossRefPubMedGoogle Scholar
  19. 19.
    Hirota N, Matsuura S, Mochizuki N, Mutoh N, Imae Y (1981) Use of lipophilic cation-permeable mutants for measurement of transmembrane electrical potential in metabolizing cells of Escherichia coli. J Bacteriol 148:399–405PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Medical Microbiology, Immunology and ParasitologyUniversity of BonnBonnGermany

Personalised recommendations