Advertisement

Antibiotics pp 107-118 | Cite as

Cytotoxicity Assays as Predictors of the Safety and Efficacy of Antimicrobial Agents

  • Alexander Zipperer
  • Dorothee Kretschmer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)

Abstract

The development of safe antimicrobial agents is important for the effective treatment of pathogens. From a multitude of discovered inhibitory compounds only few antimicrobial agents are able to enter the market. Many antimicrobials are, on the one hand, quite effective in killing pathogens but, on the other hand, cytotoxic to eukaryotic cells. Cell health can be monitored by various methods. Plasma membrane integrity, DNA synthesis, enzyme activity, and reducing conditions within the cell are known indicators of cell viability and cell death. For a comprehensive overview, methods to analyze cytotoxic and hemolytic effects, e.g., lactate dehydrogenase release, cell proliferation analysis, cell viability analysis, and hemolysis assay of antimicrobial compounds on human cells, are described in this chapter.

Key words

Cytotoxicity assay Lactate dehydrogenase release Resazurin-based cell viability assay Cell proliferation reagent WST-1 Hemolysis assay 

Notes

Acknowledgments

This work was supported by grants from the German Research Council (SFB685, SFB766, TRR156, and PE805/5-1, to A.P.; TRR34, to A.P. and D.K.) and the Fortüne Program of the Medical Faculty, University of Tübingen (to D.K.).

References

  1. 1.
    Bruniera FR, Ferreira FM, Saviolli LR, Bacci MR, Feder D, da Luz Goncalves Pedreira M, Sorgini Peterlini MA, Azzalis LA, Campos Junqueira VB, Fonseca FL (2015) The use of vancomycin with its therapeutic and adverse effects: a review. Eur Rev Med Pharmacol Sci 19(4):694–700PubMedGoogle Scholar
  2. 2.
    Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115(1):61–69CrossRefPubMedGoogle Scholar
  3. 3.
    Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64(3):313–320CrossRefPubMedGoogle Scholar
  4. 4.
    Naal FD, Salzmann GM, von Knoch F, Tuebel J, Diehl P, Gradinger R, Schauwecker J (2008) The effects of clindamycin on human osteoblasts in vitro. Arch Orthop Trauma Surg 128(3):317–323. doi: 10.1007/s00402-007-0561-y CrossRefPubMedGoogle Scholar
  5. 5.
    Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13(12):1510–1514. doi: 10.1038/nm1656, nm1656 [pii]CrossRefPubMedGoogle Scholar
  6. 6.
    Bara R, Zerfass I, Aly AH, Goldbach-Gecke H, Raghavan V, Sass P, Mandi A, Wray V, Polavarapu PL, Pretsch A, Lin W, Kurtan T, Debbab A, Brötz-Oesterhelt H, Proksch P (2013) Atropisomeric dihydroanthracenones as inhibitors of multiresistant Staphylococcus aureus. J Med Chem 56(8):3257–3272. doi: 10.1021/jm301816a CrossRefPubMedGoogle Scholar
  7. 7.
    Antczak C, Shum D, Escobar S, Bassit B, Kim E, Seshan VE, Wu N, Yang G, Ouerfelli O, Li YM, Scheinberg DA, Djaballah H (2007) High-throughput identification of inhibitors of human mitochondrial peptide deformylase. J Biomol Screen 12(4):521–535. doi: 10.1177/1087057107300463 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22(5):1304–1309. doi: 10.1093/humrep/dem011 CrossRefPubMedGoogle Scholar
  9. 9.
    Gartlon J, Kinsner A, Bal-Price A, Coecke S, Clothier RH (2006) Evaluation of a proposed in vitro test strategy using neuronal and non-neuronal cell systems for detecting neurotoxicity. Toxicol In Vitro 20(8):1569–1581. doi: 10.1016/j.tiv.2006.07.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D (2005) High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 11(6):985–993. doi: 10.1261/rna.7288405 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P (2004) Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 18(5):703–710. doi: 10.1016/j.tiv.2004.03.012 CrossRefPubMedGoogle Scholar
  12. 12.
    Gloeckner H, Jonuleit T, Lemke HD (2001) Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue. J Immunol Methods 252(1-2):131–138CrossRefPubMedGoogle Scholar
  13. 13.
    Nociari MM, Shalev A, Benias P, Russo C (1998) A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity. J Immunol Methods 213(2):157–167CrossRefPubMedGoogle Scholar
  14. 14.
    Nakayama GR, Caton MC, Nova MP, Parandoosh Z (1997) Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 204(2):205–208CrossRefPubMedGoogle Scholar
  15. 15.
    Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL (1991) An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods 142(2):257–265CrossRefPubMedGoogle Scholar
  16. 16.
    Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19(11):1518–1520CrossRefPubMedGoogle Scholar
  17. 17.
    Gallagher PG (2011) Hemolytic anemias: red cell membrane and metabolic defects. In: Goldman L, Schafer AI (eds) Cecil medicine, 24th edn. Saunders Elsevier, Philadelphia, PAGoogle Scholar
  18. 18.
    Powers A, Silberstein L (2008) Autoimmune hemolytic anemia. In: Hoffman R, Benz E, Shattil SS (eds) Hematology: basic principles and practice, 5th edn. Elsevier Churchill Livingstone, Philadelphia, PAGoogle Scholar
  19. 19.
    Schrier SPE (2008) Extrinsic nonimmune hemolytic anemias. In: Hoffman R, Benz E, Shattil SS (eds) Hematology: basic principles and practice, 5th edn. Elsevier Churchill Livingstone, Philadelphia, PAGoogle Scholar
  20. 20.
    Torres VJ, Attia AS, Mason WJ, Hood MI, Corbin BD, Beasley FC, Anderson KL, Stauff DL, McDonald WH, Zimmerman LJ, Friedman DB, Heinrichs DE, Dunman PM, Skaar EP (2010) Staphylococcus aureus fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect Immun 78(4):1618–1628. doi: 10.1128/IAI.01423-09 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Blevins JS, Beenken KE, Elasri MO, Hurlburt BK, Smeltzer MS (2002) Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect Immun 70(2):470–480CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen(IMIT)University of TübingenTübingenGermany

Personalised recommendations