Antibiotics pp 23-47 | Cite as

Mining Bacterial Genomes for Secondary Metabolite Gene Clusters

  • Martina Adamek
  • Marius Spohn
  • Evi Stegmann
  • Nadine Ziemert
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)


With the emergence of bacterial resistance against frequently used antibiotics, novel antibacterial compounds are urgently needed. Traditional bioactivity-guided drug discovery strategies involve laborious screening efforts and display high rediscovery rates. With the progress in next generation sequencing methods and the knowledge that the majority of antibiotics in clinical use are produced as secondary metabolites by bacteria, mining bacterial genomes for secondary metabolites with antimicrobial activity is a promising approach, which can guide a more time and cost-effective identification of novel compounds. However, what sounds easy to accomplish, comes with several challenges. To date, several tools for the prediction of secondary metabolite gene clusters are available, some of which are based on the detection of signature genes, while others are searching for specific patterns in gene content or regulation.

Apart from the mere identification of gene clusters, several other factors such as determining cluster boundaries and assessing the novelty of the detected cluster are important. For this purpose, comparison of the predicted secondary metabolite genes with different cluster and compound databases is necessary. Furthermore, it is advisable to classify detected clusters into gene cluster families. So far, there is no standardized procedure for genome mining; however, different approaches to overcome all of these challenges exist and are addressed in this chapter. We give practical guidance on the workflow for secondary metabolite gene cluster identification, which includes the determination of gene cluster boundaries, addresses problems occurring with the use of draft genomes, and gives an outlook on the different methods for gene cluster classification. Based on comprehensible examples a protocol is set, which should enable the readers to mine their own genome data for interesting secondary metabolites.

Key words

Genome mining Secondary metabolite gene cluster Antibiotics Biosynthesis Cluster boundaries Prioritization Gene cluster families INBEKT antiSMASH 


  1. 1.
    Pelaez F (2006) The historical delivery of antibiotics from microbial natural products—can history repeat? Biochem Pharmacol 71(7):981–990. doi: 10.1016/j.bcp.2005.10.010 CrossRefPubMedGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335. doi: 10.1021/np200906s CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr, Infectious Diseases Society of America (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164. doi: 10.1086/524891 CrossRefPubMedGoogle Scholar
  4. 4.
    Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol 11(9):639–648. doi: 10.1038/nchembio.1884 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160. doi: 10.1039/c2np20085f CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Daum M, Herrmann S, Wilkinson B, Bechthold A (2009) Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 13(2):180–188. doi: 10.1016/j.cbpa.2009.02.029 CrossRefPubMedGoogle Scholar
  7. 7.
    Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 29(10):1074–1098. doi: 10.1039/c2np20025b CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Walsh CT, Chen H, Keating TA, Hubbard BK, Losey HC, Luo L, Marshall CG, Miller DA, Patel HM (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5(5):525–534CrossRefPubMedGoogle Scholar
  9. 9.
    Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11(9):660–670. doi: 10.1038/nchembio.1883 CrossRefPubMedGoogle Scholar
  10. 10.
    Weber T (2010) Antibiotics: biosynthesis, generation of novel compounds. In: Flickinger, MC Encyclopedia of industrial biotechnology. John Wiley and Sons, Hoboken, NJ, USA. doi:10.1002/9780470054581.eib040Google Scholar
  11. 11.
    Khosla C, Herschlag D, Cane DE, Walsh CT (2014) Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 53(18):2875–2883. doi: 10.1021/bi500290t CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Piel J (2010) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 27(7):996–1047. doi: 10.1039/b816430b CrossRefPubMedGoogle Scholar
  13. 13.
    Challis GL, Naismith JH (2004) Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol 14(6):748–756. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Strieker M, Tanovic A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20(2):234–240. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  15. 15.
    Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24(1):162–190. doi: 10.1039/b507395m CrossRefPubMedGoogle Scholar
  16. 16.
    Yu D, Xu F, Zeng J, Zhan J (2012) Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64(4):285–295. doi: 10.1002/iub.1005 CrossRefPubMedGoogle Scholar
  17. 17.
    Du L, Shen B (2001) Biosynthesis of hybrid peptide-polyketide natural products. Curr Opin Drug Discov Devel 4(2):215–228PubMedGoogle Scholar
  18. 18.
    Cane DE, Ikeda H (2012) Exploration and mining of the bacterial terpenome. Acc Chem Res 45(3):463–472. doi: 10.1021/ar200198d CrossRefPubMedGoogle Scholar
  19. 19.
    Chen W, Qi J, Wu P, Wan D, Liu J, Feng X, Deng Z (2016) Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. J Ind Microbiol Biotechnol 43:401–417. doi: 10.1007/s10295-015-1636-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ (2013) The enzymes of beta-lactam biosynthesis. Nat Prod Rep 30(1):21–107. doi: 10.1039/c2np20065a CrossRefPubMedGoogle Scholar
  21. 21.
    Heide L (2009) The aminocoumarins: biosynthesis and biology. Nat Prod Rep 26(10):1241–1250. doi: 10.1039/b808333a CrossRefPubMedGoogle Scholar
  22. 22.
    Kudo F, Eguchi T (2009) Biosynthetic genes for aminoglycoside antibiotics. J Antibiot (Tokyo) 62(9):471–481. doi: 10.1038/ja.2009.76 CrossRefGoogle Scholar
  23. 23.
    Niu G, Tan H (2015) Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 23(2):110–119. doi: 10.1016/j.tim.2014.10.007 CrossRefPubMedGoogle Scholar
  24. 24.
    Sit CS, Ruzzini AC, Van Arnam EB, Ramadhar TR, Currie CR, Clardy J (2015) Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants. Proc Natl Acad Sci U S A 112(43):13150–13154. doi: 10.1073/pnas.1515348112 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33(1):15–26. doi: 10.1016/j.tibtech.2014.10.009 CrossRefPubMedGoogle Scholar
  26. 26.
    Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. doi: 10.1093/bioinformatics/btu153 CrossRefPubMedGoogle Scholar
  27. 27.
    Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27(23):4636–4641CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Meyer F, Goesmann A, McHardy AC et al (2003) GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31(8):2187–2195CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469. doi: 10.1093/bioinformatics/btr703 CrossRefPubMedGoogle Scholar
  31. 31.
    Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41(Web Server issue):W204–212. doi: 10.1093/nar/gkt449 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39(Web Server issue):W339–346. doi: 10.1093/nar/gkr466 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Weber T, Blin K, Duddela S et al (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243. doi: 10.1093/nar/gkv437 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Medema MH, Kottmann R, Yilmaz P et al (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11(9):625–631. doi: 10.1038/nchembio.1890 CrossRefPubMedGoogle Scholar
  35. 35.
    Awakawa T, Crusemann M, Munguia J, Ziemert N, Nizet V, Fenical W, Moore BS (2015) Salinipyrone and pacificanone are biosynthetic by-products of the rosamicin polyketide synthase. Chembiochem 16(10):1443–1447. doi: 10.1002/cbic.201500177 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269. doi: 10.1038/nchembio731 CrossRefPubMedGoogle Scholar
  37. 37.
    Ross AC, Xu Y, Lu L, Kersten RD, Shao Z, Al-Suwailem AM, Dorrestein PC, Qian PY, Moore BS (2013) Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria. J Am Chem Soc 135(3):1155–1162. doi: 10.1021/ja3119674 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, Wyatt MA, Magarvey NA (2015) Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 43(20):9645–9662. doi: 10.1093/nar/gkv1012 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Johnston CW, Skinnider MA, Wyatt MA, Li X, Ranieri MR, Yang L, Zechel DL, Ma B, Magarvey NA (2015) An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat Commun 6:8421. doi: 10.1038/ncomms9421 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH (2009) Automated genome mining for natural products. BMC Bioinformatics 10:185. doi: 10.1186/1471-2105-10-185 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 36(21):6882–6892. doi: 10.1093/nar/gkn685 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Anand S, Prasad MV, Yadav G, Kumar N, Shehara J, Ansari MZ, Mohanty D (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res 38(Web Server issue):W487–496. doi: 10.1093/nar/gkq340 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    de Jong A, van Hijum SA, Bijlsma JJ, Kok J, Kuipers OP (2006) BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res 34(Web Server issue):W273–279. doi: 10.1093/nar/gkl237 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cimermancic P, Medema MH, Claesen J et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158(2):412–421. doi: 10.1016/j.cell.2014.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Spohn M, Wohlleben W, Stegmann E (2016) Elucidation of the zinc dependent regulation in Amycolatopsis japonicum enabled the identification of the ethylenediamine-disuccinate ([S, S]-EDDS) genes. Environ Microbiol 18:1249–63. doi: 10.1111/1462-2920.13159 CrossRefPubMedGoogle Scholar
  46. 46.
    Munch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E, Jahn D (2003) PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 31(1):266–269CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kilic S, White ER, Sagitova DM, Cornish JP, Erill I (2014) CollecTF: a database of experimentally validated transcription factor-binding sites in Bacteria. Nucleic Acids Res 42(Database issue):D156–D160. doi: 10.1093/nar/gkt1123 CrossRefPubMedGoogle Scholar
  48. 48.
    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–208. doi: 10.1093/nar/gkp335 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7):1017–1018. doi: 10.1093/bioinformatics/btr064 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13(12):497–498CrossRefPubMedGoogle Scholar
  51. 51.
    Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  52. 52.
    Owen GA, Pascoe B, Kallifidas D, Paget MS (2007) Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves Zur and σR. J Bacteriol 189(11):4078–4086. doi: 10.1128/JB.01901-06 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Markowitz VM, Chen IM, Palaniappan K et al (2012) IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 40(Database issue):D115–D122. doi: 10.1093/nar/gkr1044 CrossRefPubMedGoogle Scholar
  54. 54.
    Medema MH, Takano E, Breitling R (2013) Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 30(5):1218–1223. doi: 10.1093/molbev/mst025 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bacci G (2015) Raw sequence data and quality control. Methods Mol Biol 1231:137–149. doi: 10.1007/978-1-4939-1720-4_9 CrossRefPubMedGoogle Scholar
  56. 56.
    Orlandini V, Fondi M, Fani R (2015) Methods for assembling reads and producing contigs. Methods Mol Biol 1231:151–161. doi: 10.1007/978-1-4939-1720-4_10 CrossRefPubMedGoogle Scholar
  57. 57.
    Galardini M, Biondi EG, Bazzicalupo M, Mengoni A (2011) CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol Med 6:11. doi: 10.1186/1751-0473-6-11 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7(3), e34064. doi: 10.1371/journal.pone.0034064 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ichikawa N, Sasagawa M, Yamamoto M, Komaki H, Yoshida Y, Yamazaki S, Fujita N (2013) DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 41(Database issue):D408–D414. doi: 10.1093/nar/gks1177 CrossRefPubMedGoogle Scholar
  61. 61.
    Conway KR, Boddy CN (2013) ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res 41(Database issue):D402–D407. doi: 10.1093/nar/gks993 CrossRefPubMedGoogle Scholar
  62. 62.
    Hadjithomas M, Chen IM, Chu K et al (2015) IMG-ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites. MBio 6(4), e00932. doi: 10.1128/mBio.00932-15 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL, Jensen PR (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci U S A 111(12):E1130–E1139. doi: 10.1073/pnas.1324161111 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Doroghazi JR, Albright JC, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10(11):963–968. doi: 10.1038/nchembio.1659 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432. doi: 10.1093/bioinformatics/btq675 CrossRefPubMedGoogle Scholar
  66. 66.
    Reddy BV, Milshteyn A, Charlop-Powers Z, Brady SF (2014) eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chem Biol 21(8):1023–1033. doi: 10.1016/j.chembiol.2014.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gokhale RS, Sankaranarayanan R, Mohanty D (2007) Versatility of polyketide synthases in generating metabolic diversity. Curr Opin Struct Biol 17(6):736–743. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  68. 68.
    Weissman KJ (2016) Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 33:203–230. doi: 10.1039/c5np00109a CrossRefPubMedGoogle Scholar
  69. 69.
    Stein DB, Linne U, Hahn M, Marahiel MA (2006) Impact of epimerization domains on the intermodular transfer of enzyme-bound intermediates in nonribosomal peptide synthesis. Chembiochem 7(11):1807–1814. doi: 10.1002/cbic.200600192 CrossRefPubMedGoogle Scholar
  70. 70.
    Barajas JF, Phelan RM, Schaub AJ, Kliewer JT, Kelly PJ, Jackson DR, Luo R, Keasling JD, Tsai SC (2015) Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chem Biol 22(8):1018–1029. doi: 10.1016/j.chembiol.2015.06.022 CrossRefPubMedGoogle Scholar
  71. 71.
    Agnihotri G, Liu HW (2003) Enoyl-CoA hydratase. Reaction, mechanism, and inhibition. Bioorg Med Chem 11(1):9–20CrossRefPubMedGoogle Scholar
  72. 72.
    Koetsier MJ, Jekel PA, Wijma HJ, Bovenberg RA, Janssen DB (2011) Aminoacyl-coenzyme A synthesis catalyzed by a CoA ligase from Penicillium chrysogenum. FEBS Lett 585(6):893–898. doi: 10.1016/j.febslet.2011.02.018 CrossRefPubMedGoogle Scholar
  73. 73.
    Chan DI, Vogel HJ (2010) Current understanding of fatty acid biosynthesis and the acyl carrier protein. Biochem J 430(1):1–19. doi: 10.1042/BJ20100462 CrossRefPubMedGoogle Scholar
  74. 74.
    Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26(1):90–114CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Haslinger K, Peschke M, Brieke C, Maximowitsch E, Cryle MJ (2015) X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 521(7550):105–109. doi: 10.1038/nature14141 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Martina Adamek
    • 1
    • 2
  • Marius Spohn
    • 1
  • Evi Stegmann
    • 1
    • 2
  • Nadine Ziemert
    • 1
    • 2
  1. 1.Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/BiotechnologyUniversity of TübingenTübingenGermany
  2. 2.German Centre for Infection Research (DZIF), Partner Site TübingenTübingenGermany

Personalised recommendations