Antibiotics pp 263-279 | Cite as

Expression Profiling of Antibiotic-Resistant Bacteria Obtained by Laboratory Evolution

  • Shingo Suzuki
  • Takaaki Horinouchi
  • Chikara Furusawa
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1520)

Abstract

To elucidate the mechanisms of antibiotic resistance, integrating phenotypic and genotypic features in resistant strains is important. Here, we describe the expression profiling of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution, and a method for extracting a small number of genes whose expression changes can contribute to the acquisition of resistance.

Key words

Antibiotic resistance Laboratory evolution Transcriptome analysis Escherichia coli 

Notes

Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research (S) [15H05746], a Grant-in-Aid for Scientific Research (B) [26290071,15H04733], and a Grant-in-Aid for Challenging Exploratory Research [26650138] from JSPS.

References

  1. 1.
    Lenski RE (1998) Bacterial evolution and the cost of antibiotic resistance. Int Microbiol 1(4):265–270PubMedGoogle Scholar
  2. 3.
    Lazar V, Nagy I, Spohn R, Csorgo B, Gyorkei A, Nyerges A, Horvath B, Voros A, Busa-Fekete R, Hrtyan M, Bogos B, Mehi O, Fekete G, Szappanos B, Kegl B, Papp B, Pal C (2014) Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 5:4352. doi: 10.1038/ncomms5352 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 4.
    Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44(1):101–105. doi: 10.1038/ng.1034 CrossRefGoogle Scholar
  4. 5.
    Suzuki S, Horinouchi T, Furusawa C (2014) Prediction of antibiotic resistance by gene expression profiles. Nat Commun 5:5792. doi: 10.1038/ncomms6792 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 6.
    Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304. doi: 10.1038/35012500 CrossRefPubMedGoogle Scholar
  6. 7.
    Lee HH, Molla MN, Cantor CR, Collins JJ (2010) Bacterial charity work leads to population-wide resistance. Nature 467(7311):82–85. doi: 10.1038/nature09354 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 8.
    Lazar V, Pal Singh G, Spohn R, Nagy I, Horvath B, Hrtyan M, Busa-Fekete R, Bogos B, Mehi O, Csorgo B, Posfai G, Fekete G, Szappanos B, Kegl B, Papp B, Pal C (2013) Bacterial evolution of antibiotic hypersensitivity. Mol Syst Biol 9:700. doi: 10.1038/msb.2013.57 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 9.
    Imamovic L, Sommer MO (2013) Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med 5(204):204ra132. doi: 10.1126/scitranslmed.3006609 CrossRefPubMedGoogle Scholar
  9. 10.
    Posfai G, Plunkett G 3rd, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046. doi: 10.1126/science.1126439 CrossRefPubMedGoogle Scholar
  10. 11.
    Bolstad BM, Irizarry RA, Åstrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193CrossRefPubMedGoogle Scholar
  11. 12.
    Matveeva OV, Shabalina SA, Nemtsov VA, Tsodikov AD, Gesteland RF, Atkins JF (2003) Thermodynamic calculations and statistical correlations for oligo-probes design. Nucleic Acids Res 31(14):4211–4217CrossRefPubMedPubMedCentralGoogle Scholar
  12. 13.
    Ono N, Suzuki S, Furusawa C, Agata T, Kashiwagi A, Shimizu H, Yomo T (2008) An improved physico-chemical model of hybridization on high-density oligonucleotide microarrays. Bioinformatics 24(10):1278–1285. doi: 10.1093/bioinformatics/btn109 CrossRefPubMedCentralGoogle Scholar
  13. 14.
    Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33(Web Server Issue):W577–W581. doi: 10.1093/nar/gki591 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 15.
    Suzuki S, Horinouchi T, Furusawa C (2015) Phenotypic changes associated with the fitness cost in antibiotic resistant Escherichia coli strains. Mol Biosyst. doi: 10.1039/c5mb00590f Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shingo Suzuki
    • 1
  • Takaaki Horinouchi
    • 1
  • Chikara Furusawa
    • 1
  1. 1.Quantitative Biology CenterSuita, OsakaJapan

Personalised recommendations