Antibiotics pp 237-245 | Cite as

Cell-Based Fluorescent Screen to Identify Inhibitors of Bacterial Translation Initiation

Part of the Methods in Molecular Biology book series (MIMB, volume 1520)


A strategy that can be applied to the research of new molecules with antibacterial activity is to look for inhibitors of essential bacterial processes within large collections of chemically heterogeneous compounds. The implementation of this approach requires the development of proper assays aimed at the identification of molecules interfering with specific cell pathways and potentially applicable to the high throughput analysis of large chemical library. Here, I describe a fluorescence-based whole-cell assay in Escherichia coli devised to find inhibitors of the translation initiation pathway. Translation is a complex and essential mechanism. It involves numerous sub-steps performed by factors that are in many cases sufficiently dissimilar in bacterial and eukaryotic cells to be targetable with domain-specific drugs. As a matter of fact, translation has been proven as one of the few bacterial mechanisms pharmacologically tractable with specific antibiotics. The assay described in this chapter is tailored to the identification of molecules affecting the first stage of translation initiation, which is the most dissimilar step in bacteria vs. mammals. The effect of the compounds under analysis is assayed in living cells, thus allowing evaluating their in vivo performance as inhibitors of translation initiation. Compared with other assays for antibacterials, the major advantages of this screen are its simplicity and high mechanism specificity.

Key words

Translation initiation Whole-cell assay Gram-negative bacteria Leaderless mRNA S1 ribosomal protein Ribosome Antibacterial compounds 



I thank lab members who were involved in the assay setup and in the screening of the Prestwick library, and in particular Matteo Raneri. The development of the assay was supported by the Italian Cystic Fibrosis Research Foundation (grant FFC#8/2013 sponsored by the FFC Delegation of Montebelluna “La bottega delle donne”).


  1. 1.
    Myasnikov AG, Simonetti A, Marzi S, Klaholz BP (2009) Structure-function insights into prokaryotic and eukaryotic translation initiation. Curr Opin Struc Biol 19(3):300–309. doi: 10.1016/ CrossRefGoogle Scholar
  2. 2.
    Benelli D, Londei P (2009) Begin at the beginning: evolution of translational initiation. Res Microbiol 160(7):493–501. doi: 10.1016/j.resmic.2009.06.003 CrossRefPubMedGoogle Scholar
  3. 3.
    Subramanian AR (1983) Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol 28:101–142CrossRefPubMedGoogle Scholar
  4. 4.
    Salah P, Bisaglia M, Aliprandi P, Uzan M, Sizun C, Bontems F (2009) Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis. Nucleic Acids Res 37(16):5578–5588. doi: 10.1093/nar/gkp547 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Roberts MW, Rabinowitz JC (1989) The effect of Escherichia coli ribosomal protein S1 on the translational specificity of bacterial ribosomes. J Biol Chem 264(4):2228–2235PubMedGoogle Scholar
  6. 6.
    Sørensen MA, Fricke J, Pedersen S (1998) Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J Mol Biol 280(4):561–569. doi: 10.1006/jmbi.1998.1909 CrossRefPubMedGoogle Scholar
  7. 7.
    Tedin K, Resch A, Bläsi U (1997) Requirements for ribosomal protein S1 for translation initiation of mRNAs with and without a 5′ leader sequence. Mol Microbiol 25(1):189–199. doi: 10.1046/j.1365-2958.1997.4421810.x CrossRefPubMedGoogle Scholar
  8. 8.
    Moll I, Grill S, Gualerzi CO, Bläsi U (2002) Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43(1):239–246. doi: 10.1046/j.1365-2958.2002.02739.x CrossRefPubMedGoogle Scholar
  9. 9.
    Delvillani F, Papiani G, Dehò G, Briani F (2011) S1 ribosomal protein and the interplay between translation and mRNA decay. Nucl Acids Res 39(17):7702–7715. doi: 10.1093/nar/gkr417 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moll I, Hirokawa G, Kiel MC, Kaji A, Bläsi U (2004) Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res 32(11):3354–3363. doi: 10.1093/nar/gkh663 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Udagawa T, Shimizu Y, Ueda T (2004) Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria. J Biol Chem 279(10):8539–8546. doi: 10.1074/jbc.M308784200 CrossRefPubMedGoogle Scholar
  12. 12.
    Briani F, Curti S, Rossi F, Carzaniga T, Mauri P, Dehò G (2008) Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in Escherichia coli. RNA 14(11):2417–2429. doi: 10.1261/rna.1123908 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kitakawa M, Isono K (1982) An amber mutation in the gene rpsA for ribosomal protein S1 in Escherichia coli. Mol Gen Genet 185(3):445–447CrossRefPubMedGoogle Scholar
  14. 14.
    Raneri M, Sciandrone B, Briani F (2015) A whole-cell assay for specific inhibitors of translation initiation in bacteria. J Biomol Screen 20(5):627–633. doi: 10.1177/1087057114566376 CrossRefPubMedGoogle Scholar
  15. 15.
    Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzu M, Nierhaus KH, Yokoyama S, Fucini P (2006) The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13(10):871–878. doi: 10.1038/nsmb1145 CrossRefPubMedGoogle Scholar
  16. 16.
    Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I (2009) An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 33(2):227–236. doi: 10.1016/j.molcel.2008.12.014 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sekiguchi M, Iida S (1967) Mutants of Escherichia coli permeable to actinomycin. Proc Natl Acad Sci U S A 58(6):2315–2320CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87(12):4645–4649CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Delvillani F, Sciandrone B, Peano C, Petiti L, Berens C, Georgi C, Ferrara S, Bertoni G, Pasini ME, Dehò G, Briani F (2014) Tet-Trap, a genetic approach to the identification of bacterial RNA thermometers: application to Pseudomonas aeruginosa. RNA 20(12):1963–1976. doi: 10.1261/rna.044354.114 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schleif R (2000) Regulation of the L-arabinose operon of Escherichia coli. Trends Genet 16(12):559–565. doi: 10.1016/S0168-9525(00)02153-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Bertani G (1951) Studies on lysogenesis. I The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly

Personalised recommendations